anoxygenic photosynthesizers consume (and fix) _____, but they do not release _____ into the environment

Answers

Answer 1

Anoxygenic photosynthesizes consume (and fix) carbon dioxide , but they do not release oxygen into the environment.

Because, unlike in oxygenic photosynthesis, the electron flow in these organisms does not result in the production of molecular oxygen as a byproduct. Some bacteria engage in anoxygenic photosynthesis, which is distinct from the more typical oxygenic photosynthesis practiced by plants and algae.

In some aquatic habitats, anoxygenic photosynthesis typically takes place in conditions where oxygen is absent or present in very small amounts. Electrons are typically transferred from an electron donor to a photosystem that resembles those found in oxygenic photosynthetic organisms during anoxygenic photosynthesis.

Learn more about photosynthesis at:

brainly.com/question/29769016

#SPJ4


Related Questions

With regard to energy flow, describe what is meant by "bottom-up" and "top-down"
Give some examples discussed in class of data that shows bottom-up or top-down forces.

Answers

Answer:

Explanation:

"Bottom-up" and "bottom-up" approaches are utilized in ecology to comprehend the energy flow and ecosystem regulation.

The theory that an ecosystem's abundance and energy flow are determined by the availability of resources like light, water, and nutrients is known as bottom-up. All in all, the assets accessible at the foundation of the established pecking order limit the wealth of more elevated level life forms. Changes in resources at the base of the food chain are assumed to have a direct impact on the populations of organisms that rely on them in the bottom-up approach.

In contrast, top-down theory holds that the presence and behavior of top predators control the abundance and behavior of organisms in an ecosystem. Changes in the populations of top predators will have a direct impact on the populations of lower-level organisms as a result of this strategy, which shifts control of the food chain from the top to the bottom.

In class, we talked about bottom-up and top-down forces like:

Bottom-up: In marine ecosystems, studies have demonstrated that the availability of nutrients can have an effect on the growth of phytoplankton, which in turn can have an effect on the abundance of zooplankton and fish. Iron fertilization, for instance, can boost phytoplankton growth, which in turn can support more fish and zooplankton.

Top-down: In Yellowstone National Park, the reintroduction of gray wolves resulted in a trophic cascade, in which the presence of wolves decreased the number of elk and increased the number of vegetation and other herbivores like beavers and songbirds.

Both: The case of the Chesapeake Straight shellfish populace outlines both base up and hierarchical powers. Oyster populations declined as a result of disease and overfishing, resulting in a decline in water quality as oysters lost their ability to filter water. Phytoplankton and other resources from the bottom up became harder to come by as a result of the deteriorating quality of the water, further harming the oyster population.

A population of 2800 flowers is in Hardy-Weinberg equilibrium, and 2352 of them are red in color. The red allele [R]is the dominant allele; the allele for white color [r] is recessive. What would be the frequency of heterozygotes in the population?

Answers

The frequency of heterozygotes in the population is approximately 0.399 or 39.9%.

In a population in Hardy-Weinberg equilibrium, the frequencies of alleles and genotypes remain constant from generation to generation. The Hardy-Weinberg equation is:

[tex]p^2 + 2pq + q^2 = 1[/tex]

where p is the frequency of the dominant allele (R), q is the frequency of the recessive allele (r), [tex]p^2[/tex] is the frequency of homozygous dominant individuals (RR), [tex]q^2[/tex]is the frequency of homozygous recessive individuals (rr), and 2pq is the frequency of heterozygous individuals (Rr).

We are given that the population has 2800 flowers, and 2352 of them are red (RR or Rr). This means that the frequency of the red allele (p) is:

p = (number of red alleles) / (total number of alleles) = (2 x number of RR individuals + number of Rr individuals) / (2 x total number of individuals)

p = (2 x 2352 + x) / (2 x 2800) = (4704 + x) / 5600

where x is the number of Rr individuals.

We can also find the frequency of the white allele (q) as:

q = 1 - p

q = 1 - (4704 + x) / 5600 = (896 - x) / 5600

Now we can use the Hardy-Weinberg equation to solve for the frequency of heterozygous individuals:

2pq = 2[(4704 + x) / 5600][(896 - x) / 5600]

2pq = (2 x 4704 x 896 - [tex]2x^2[/tex]) /[tex]5600^2[/tex]

2pq = (8423936 - [tex]2x^2[/tex]) / 31360000

We know that the population is in Hardy-Weinberg equilibrium, so the frequency of heterozygotes should be the same as the expected frequency of heterozygotes based on the allele frequencies:

2pq = 0.4

Therefore, we can solve for x:

(8423936 - [tex]2x^2[/tex]) / 31360000 = 0.4

8423936 -[tex]2x^2[/tex]= 12544000

[tex]2x^2[/tex] = 4110064

[tex]x^2[/tex] = 2055032

x = 1433.8 (rounded to the nearest whole number)

Therefore, there are approximately 1434 Rr individuals in the population, and the frequency of heterozygotes is:

2pq = 2[(4704 + 1434) / 5600][(896 - 1434) / 5600] = 0.399

So the frequency of heterozygotes in the population is approximately 0.399 or 39.9%.

Learn more about heterozygotes

https://brainly.com/question/14781298

#SPJ4

Receptor causing increased myocardial contractility

Answers

The receptor that causes increased myocardial contractility is the beta-1 adrenergic receptor.

Beta-1 adrenergic receptors are located primarily in the heart, particularly in the sinoatrial (SA) and atrioventricular (AV) nodes, as well as in the ventricles.

When activated by the neurotransmitter epinephrine (adrenaline) or norepinephrine (noradrenaline), which are released by the sympathetic nervous system, beta-1 adrenergic receptors increase the heart rate and force of contraction, leading to increased myocardial contractility.

Learn more about receptors at:

https://brainly.com/question/11985070

#SPJ4

Holes in the temple of Jupiter Serapis are due to ___.
A. termites
B. worms
C. vandals
D. the holes are due to all of the above
E. the holes aren’t due to any of the above

Answers

Holes in the temple of Jupiter Serapis are due to the holes are due to all of the above

Option D is correct.

What is temple of Jupiter Serapis?

The  so-called Temple of Jupiter Serapis at Pozzuoli, near Naples, was long thought to have been a temple to the ancient god Serapis, due to the discovery of a statue of the Greco- Egyptian god at the site.

The place  is now known, however, to have been the macellum, or public marketplace, of Pozzuoli.

Although the exact date of the temple's founding is unknown, it is known that it existed under Caracalla's rule. It was regarded as the Quirinal Hill's most imposing temple.

Learn more about Greco- Egyptian god at: https://brainly.com/question/10526396

#SPJ1

this is an acceleration-deceleration mechanism of energy transfer to the neck that commonly results from rear end or side-impact MVA, but can also occur during diving or other mishaps

Answers

The term you are referring to is called whiplash. Whiplash is an acceleration-deceleration mechanism of energy transfer to the neck that commonly results from rear end or side-impact motor vehicle accidents, but can also occur during diving or other mishaps.

This sudden and forceful movement of the head and neck can cause injury to the soft tissues, such as muscles, ligaments, and tendons in the neck, resulting in pain, stiffness, and limited range of motion. It is important to seek medical attention ,
   Whiplash commonly results from rear-end or side-impact motor vehicle accidents (MVA), but can also occur during diving or other mishaps. This injury involves the rapid movement of the head and neck.

to know more about acceleration mechanism click this link -

brainly.com/question/28575899

#SPJ11

what change to the sound wave depicted in the top graph would cause the neuron in the bottom graph to fire less often?

Answers

A change to the sound wave depicted in the top graph that would cause the neuron in the bottom graph to fire less often could be a decrease in the amplitude or intensity of the sound wave.

This decrease in energy would result in a weaker signal reaching the neuron, causing it to fire less frequently. Additionally, a change in the frequency or pitch of the sound wave could also affect the neuron's firing rate, as different frequencies activate different neurons in the auditory system. A decrease in the frequency of the sound wave may result in the neuron firing less often if it is not tuned to respond to lower frequencies.

A decrease in the amplitude (loudness) or frequency (pitch) of the sound wave would likely cause the neuron in the bottom graph to fire less often. This is because a lower amplitude or frequency means less stimulation for the neuron, resulting in fewer action potentials being generated.

1. Observe the sound wave in the top graph.
2. Identify its amplitude and frequency.
3. Decrease the amplitude or frequency of the sound wave.
4. Observe the change in the neuron firing rate in the bottom graph.

Therefore,  A decrease in the frequency of the sound wave may result in the neuron firing less often if it is not tuned to respond to lower frequencies.

To know more about Sound wave refer here:

https://brainly.com/question/30975872

#SPJ11

The most prominent pesticide law in the United States is the Federal Insecticide, Fungicide, and Rodenticide Act. This act is overseen by what agency?
A. USDA
B. US Department of Commerce
C. US Department of Transportation
D. Division of Chemistry
E. US EPA

Answers

The agency that oversees the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is the: US Environmental Protection Agency (EPA). The correct option is: (E).

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is the primary pesticide law in the United States. FIFRA regulates the registration, distribution, sale, and use of pesticides in the country. The United States Environmental Protection Agency (EPA) is responsible for implementing and enforcing this act.

The EPA is a federal agency that is charged with protecting human health and the environment through the regulation of various industries, including agriculture and pest control.

Under FIFRA, the EPA evaluates and registers all pesticides used in the United States to ensure their safety and effectiveness. The agency also regulates how pesticides can be used, stored, and disposed of, and conducts periodic reviews to ensure that they continue to meet safety standards.

The EPA can take legal action against individuals or companies that violate FIFRA regulations, and has the power to revoke or suspend pesticide registrations if necessary.

To know more about "Pesticides" refer here:

https://brainly.com/question/1386090#

#SPJ11

All the nutrients that enter the hepatic portal vein are routed where for decontamination?

Answers

All the nutrients that enter the hepatic portal vein are routed to the liver for decontamination.

The liver is essential in processing and filtering the nutrients and other substances that are absorbed from the digestive tract because it receives blood from the gastrointestinal tract and spleen.

The liver serves as a metabolic hub carrying out a number of activities that assist in regulating the body's nutrient and energy balance. Hepatocytes are specialized cells that filter and process blood as it passes through the liver. They do this by removing toxins, storing nutrients and producing a variety of crucial molecules like bile, glucose, and proteins as well as storing and producing nutrients.

The liver is essential for controlling blood sugar levels, cholesterol metabolism, and the breakdown and excretion of drugs and other foreign substances.

Learn more about hepatic portal vein at:

brainly.com/question/12897264

#SPJ4

Which of the enzymes in questions 6 and 7 produce phosphodiester bonds and which of the enzymes break phosphodiester bonds?

Answers

The enzymes that form phosphodiester bonds include excision nucleases, which can identify large lesions (pyrimidine dimers), and DNA polymerase, which can replace the incorrect base. Option 1 and 4 are Correct.

Ribonucleases (RNases) cleave phosphodiester bonds in RNA and are crucial for several types of RNA processing as well as nonspecific RNA degradation. Nucleases can be endo or exo, DNases or RNases, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes; they cleave the phosphodiester bonds of nucleic acids.

The phosphodiester linkages between the phosphate and the pentose sugar in the sugar-phosphate backbone are broken at a specific point by restriction enzymes. By catalyzing the creation of bonds between opposing 5′P and 3′OH ends in an adenylation-dependent manner, DNA ligases join breaks in the phosphodiester backbone of DNA. Option 1 and 4 are Correct.

Learn more about enzymes visit: brainly.com/question/14577353

#SPJ4

Correct Question:

Which of the enzymes produce phosphodiester bonds and which of the enzymes break phosphodiester bonds?

1. excision nucleases- recognizes the bulky lesions(pyrimidine dimer) and

2. adds nicks to the backbone

3. DNA helicase- removes short nucleotide

4. DNA polymerase - replaces with correct base

What nerve does the recurrent laryngeal nerve give rise to?This nerve innervates what muscles? Except?

Answers

The recurrent laryngeal nerve (RLN) is a branch of the vagus nerve (CN X) that provides sensory and motor innervation to the larynx.

All intrinsic laryngeal muscles get motor innervation from the inferior laryngeal nerve (ILN), with the exception of the cricothyroid muscle, which is innervated by the external laryngeal nerve (ELN).

The thyroarytenoid, lateral cricoarytenoid, transverse arytenoid, and interarytenoid muscles are among the intrinsic laryngeal muscles that the RLN innervates.

These muscles are in charge of breathing, swallowing, and producing sound. The laryngeal mucosa, voice cords, and aryepiglottic folds are among the laryngeal tissues that receive sensory innervation from the RLN.

To learn more about larynx visit:

https://brainly.com/question/2710626

#SPJ4

What are some human activities that could affect a food web or food chain

Answers

There are many human activities that can affect a food web or food chain, including:

Habitat destruction: Human activities such as deforestation, urbanization, and agriculture can destroy habitats, which can lead to the loss of plant and animal species and disrupt food webs.

Overfishing: Overfishing can reduce the population of certain fish species, which can in turn disrupt the food chain and affect the abundance of other marine organisms.

Pollution: Human activities such as industrial and agricultural practices can release pollutants into the environment, which can contaminate food sources and harm organisms at different levels of the food chain.

Introduction of invasive species: Human activities such as introducing non-native species to an ecosystem can disrupt food webs by competing with native species for resources or preying on them.

Climate change: Human activities such as burning fossil fuels and deforestation can contribute to global warming and climate change, which can alter the availability of food sources and disrupt the timing of seasonal events in a food web.

Hunting and poaching: Hunting and poaching of animals for food or other purposes can affect the abundance and distribution of species in a food web.

Pesticide use: Pesticides can have unintended effects on non-target organisms, including those in food webs, which can disrupt the balance of the ecosystem.

These are just a few examples of human activities that can affect food webs or food chains. It's important to consider the potential impacts of human activities on the environment and take steps to mitigate or avoid negative effects.

learn more about food chain here:

https://brainly.com/question/16065961

#SPJ11

What is the L scale on the MMPI?

Answers

The L scale used by the MMPI (Minnesota Multiphasic Personality Inventory) consists of a 46-item scale that hypomanic symptoms such as excessive undirected energy, hallucinations, and others.

The Minnesota Multiphasic Personality Inventory (MMPI) is a testing tool used by medical practitioners to aid in the diagnosis of mental illnesses. It is the one that is the most commonly used and studied clinical evaluation tool.

The exam was created in the final stages of the 1930s and has since been refined and updated multiple times in order to increase accuracy and validity. Anxiety disorders, eating disorders, anxiety disorders, personality diseases, psychotic disorders, and drug addiction disorders are examples of common mental health illnesses. Feeling grief or down, loss of enthusiasm or pleasure in duties changes in thirst as well weight.

Insomnia, as well as oversleeping, physical agitation or apathy, fatigue or loss of energy, feelings of meaninglessness or resentment, difficulty thinking or paying attention, and recurring thoughts are all symptoms of mood disorders.

Learn more about MMPI here:

https://brainly.com/question/17297821

#SPJ4

What does the proton motive force drive? And what is this called?

Answers

When the cell membrane becomes energized due to electron transport activities by the electron carriers that are embedded in it, the proton motive force (PMF) occurs.

As a result, the cell behaves like a little battery. Its energy can be utilized immediately to do work, such as power flagella, or it can be saved in ATP for later use. This is known as chemiosmosis. During cellular respiration, the electronic transport chain (ETC) generates the proton motive force (PMF).

Protons travel across the membrane inside the mitochondria when electrons are passed through the ETC, creating a gradient. As protons move down the concentration gradient of protons into the matrix via the membrane-associated protein ATP synthase, this gradient is employed to synthesize ATP.

Adenosine triphosphate (ATP) is a resource-carrying molecule described as "the energy exchange of life" or "the fuel of life," since it serves as the ubiquitous energy source of all living cells. Every living entity is made up of cells and utilises ATP for energy. ATP is created by turning the energy we consume into food.

learn more about proton motive force (PMF)  here:

https://brainly.com/question/30640325

#SPJ4

Assume a person is placed on cortisol medication, a glucocorticoid. How would you expect the rates of ACTH and CRF hormone production to change in the person?

Answers

When prescribing cortisol medication, it is important to carefully monitor the dosage and duration of treatment to avoid HPA axis suppression and its associated side effects.

Cortisol is a glucocorticoid hormone produced by the adrenal glands that play a crucial role in regulating several physiological processes, including metabolism, immune response, and stress response. Cortisol production is tightly regulated by a feedback loop involving the hypothalamus-pituitary-adrenal (HPA) axis. The hypothalamus secretes corticotropin-releasing hormone (CRH), which stimulates the pituitary gland to secrete adrenocorticotropic hormone (ACTH), which in turn stimulates the adrenal glands to produce cortisol.

If a person is placed on cortisol medication, the exogenous cortisol can suppress the HPA axis feedback loop by reducing CRH and ACTH production. This occurs because high levels of cortisol in the blood signal the hypothalamus and pituitary gland to decrease the production and release of CRH and ACTH, respectively. As a result, the normal HPA axis feedback loop is disrupted, leading to decreased ACTH and CRH production.

The suppression of ACTH and CRH production by exogenous cortisol can have several consequences, including reduced immune function, decreased bone density, and increased risk of infections.

To learn more about cortisol medication

https://brainly.com/question/30561698

#SPJ4

Which generation of progestins has the highest affinity for androgen receptors?

Answers

The generation of progestins with the highest affinity for androgen receptors is the first generation.

These progestins, such as testosterone and norethindrone, have a high androgenic activity in addition to their progestogenic activity. This androgenic activity can lead to unwanted side effects, such as acne, hirsutism, and changes in libido. Second-generation progestins, such as levonorgestrel and norgestimate, have a lower androgenic activity than first-generation progestins.

Third-generation progestins, such as desogestrel and gestodene, have even lower androgenic activity, while fourth-generation progestins, such as drospirenone, have anti-androgenic activity.

To know more about androgen here

https://brainly.com/question/30060150

#SPJ4

probabilistic and dichotomous keys for microbial identification would not be used in situations where: choose one or more: a. microscopic examination is possible. b. species are incompletely characterized. c. isolates are of clinical significance. d. time is of the essence. e. the organism is uncultured.

Answers

Probabilistic and dichotomous keys for microbial identification would not be used in situations where b. species are incompletely characterized

In cases where species are incompletely characterized, there may not be enough information to accurately identify the microorganism using these keys. Additionally, when dealing with uncultured organisms, it may be challenging to obtain the necessary data for accurate identification through these methods. Options a, c, d, and e are not the primary reasons for not using probabilistic and dichotomous keys, as they can still be employed in situations where microscopic examination is possible, isolates are of clinical significance, or when time is of the essence.

However, it is important to consider the specific circumstances and the level of accuracy required for microbial identification before choosing the most appropriate method. Probabilistic and dichotomous keys for microbial identification would not be used in situations where b. species are incompletely characterized.

learn more about microorganism here:

https://brainly.com/question/14732566

#SPJ11

What two types of receptors make up the retina?

Answers

The two types of receptors that make up the retina are "rods" and "cones."

These receptors are specialized cells that detect light and play a crucial role in the process of vision. There are two main types of light-sensitive cell in the eye: rods and cones.

Additionally, two types of photoreceptors, rod and cone cells, are found in the retina. Rod cells account for about 95% of all photoreceptors and are concentrated at the outer edges of the retina while cone cells are concentrated near the center of the retina around an area called the macula.

There are four photoreceptor types in the human retina. Short-wavelength cones (blue), medium-wavelength cones (green), long-wavelength cones (red) and rods.. Three different cone mechanisms can be detected in behavioral, psychophysical and physiological testing

To know more about retina: https://brainly.com/question/5854936

#SPJ11

Which organism share the most recent common ancestor- the mouse and chimp, or the pigeon and chimp?

Answers

The mouse and chimp share the most recent common ancestor.

Mice and chimps belong to the same taxonomic group, called the Euarchontoglires, which includes primates, rodents, and rabbits.

They diverged from a common ancestor approximately 80 million years ago, during the Cretaceous period.

On the other hand, pigeons belong to the taxonomic group Aves, which includes all birds. Birds and mammals diverged from a common ancestor approximately 310 million years ago, during the Carboniferous period.

Learn more about common ancestor at:

https://brainly.com/question/15990290

#SPJ4

(A)Commensalism(B)Parasitism(C)Mutualism(D)Predation(E)CompetitionExemplified by ticks feeding on a deer.ABCDE

Answers

B parasitism
Ticks are external parasites (ectoparasites) that that gets nutrients from animals blood (deer)

What is it called when milk is heated to 191-212

Answers

Answer:

Pasteurization

Explanation:

Pasteurization is the process of heating something up quickly then cooling it back down. Pasteurizing milk destroys 99.9% of disease-causing microorganisms and extends the shelf life to 16-21 days from the time it was packaged.

Co2 is not very soluble in water AND hemoglobin has a low affinity for Co2. how does co2 leave the body then? how does this explain how pH changes in the blood.

Answers

Carbon dioxide is not very soluble in water, which means that it cannot be transported through the body in the same way as oxygen.

Instead, carbon dioxide is transported in the body using hemoglobin, which has a low affinity for it. In order to leave the body, carbon dioxide must first be converted into a form that can be transported by either the blood or the lymphatic system.

This is accomplished by a process known as the "bicarbonate shuttle." The carbon dioxide is converted into bicarbonate, which can then be transported in the blood. As the bicarbonate leaves the body, it causes the pH of the blood to become more acidic, which is known as acidosis.

Conversely, when the bicarbonate enters the body, it causes the pH of the blood to become more basic, which is known as alkalosis. In this way, the body is able to regulate its pH levels and maintain homeostasis.

Know more about lymphatic system here

https://brainly.com/question/30889295#

#SPJ11

what else is reacted in succinate to fumarate?

Answers

Succinate is converted to fumarate in the citric acid cycle (also known as the Krebs cycle or the TCA cycle). This specific reaction is catalyzed by the enzyme succinate dehydrogenase, which is part of Complex II of the mitochondrial electron transport chain.

In this process, two hydrogens are removed from succinate, which results in the formation of fumarate, and the two electrons that are released are transferred to a molecule called flavin adenine dinucleotide (FAD). FAD acts as an electron acceptor and is reduced to FADH2. The enzyme succinate dehydrogenase is unique because it is directly bound to the inner mitochondrial membrane, and it facilitates the transfer of electrons from FADH2 to the electron transport chain.

This reaction is an essential step in the citric acid cycle, as it links the cycle to oxidative phosphorylation, which generates ATP, the primary energy source for the cell. The conversion of succinate to fumarate is a critical part of cellular respiration, allowing cells to efficiently produce energy from carbohydrates, fats, and proteins. As a result, this reaction plays a vital role in maintaining cellular energy levels and supporting various cellular processes.

Know more about Citric acid cycle here:

https://brainly.com/question/14900762

#SPJ11

Does the power of the human eye increase or decrease when the ciliary muscles contract?

Answers

The eye lens thickens and shortens in focal length when the ciliary muscle contracts. The lens is able to adjust its focal length as needed.

Because there is less tension on the zonular fibers when the ciliary muscle contracts, the lens becomes more spherical and has better focussing power. These fibers tighten when the ciliary muscles relax, forcing the lens out into a flatter shape with reduced focusing power.

The lens becomes more spherical when the ciliary muscles constrict. The concentration power therefore grows. As a result, the object is readily visible. It is referred to as accomodation. The lens becomes thin and the focal length of the eye lens rises when the ciliary muscles are relaxed.

Learn more about muscles visit: brainly.com/question/25778330

#SPJ4

Describe how genetic analyses have been used to protect Florida panthers, prairie chickens, and elephants.

Answers

Answer: Genetic analyses have played a crucial role in protecting endangered species such as the Florida panther, prairie chickens, and elephants. These analyses have helped conservationists understand the genetic diversity, relatedness, and health of these populations, which can inform management strategies to ensure their survival.

Explanation:

HELP
Evolution is not only the development of new species from older ones, as most people assume. It is also the minor changes within a species from generation to generation over long periods of time that can result in the gradual transition to new species.
Choose all of the statements which are true concerning the Hardy-Weinberg Principle.

Answers

Can you find the surface area and volume

excess of GH in childhood results in _____. Deficit in childhood results in ______. When an excess of deficiency occurs in adults, its called ________.

Answers

Excess of GH in childhood results in pituitary gland Deficit in childhood. When an excess of deficiency occurs in adults, its called gigantism.

Gigantism occurs when the pituitary gland produces too much GH before the growth plates in the long bones of the body have closed. This excess of GH stimulates the growth plates to continue growing, resulting in excessive height.

Deficit of growth hormone in childhood results in a condition called growth hormone deficiency (GHD), characterized by delayed growth and short stature. Children with GHD may also have delayed puberty, reduced muscle mass, and increased body fat. GHD can be caused by genetic factors, pituitary gland disorders, brain injury, or radiation therapy.

To know more about gigantism here

https://brainly.com/question/8101179

#SPJ4

What type of food dominates human energy intake?

Answers

Carbohydrates dominate the energy intake in the case of humans as they are responsible for the majority of our calories.

Our diet contains a number of different nutrients which are essential for body growth and maintenance and our overall health. The different nutrients that we take in our diet include vitamins, proteins, carbohydrates, fats etc.

Carbohydrates are the food which are responsible for the majority of our calories and provide energy to us to perform the daily tasks which are required. Carbohydrates majorly include different grains like rice, corns, rye wheat etc. They are the major source of energy followed by fats and finally the proteins.

To know more about carbohydrates

https://brainly.com/question/20404164

#SPJ4

During pregnancy, what organ produces the hormones that maintain the endometrium and prepare the breasts for milk production?

Answers

The organ that produces the hormones necessary to maintain the endometrium and prepare the breasts for milk production during pregnancy is the placenta.

The placenta is a unique organ that forms in the uterus during pregnancy, providing oxygen and nutrients to the growing fetus. It also produces hormones, such as human chorionic gonadotropin (hCG), estrogen, and progesterone, which help to maintain the endometrium and prepare the breasts for milk production.

Progesterone is the hormone that maintains the endometrium during pregnancy and allows the breasts to develop and produce milk. Estrogen helps to promote the growth of the mammary glands during pregnancy, while hCG helps to support the production of progesterone. All of these hormones are essential to ensure a healthy pregnancy and the development of the mother's breasts in preparation for breastfeeding.

Know more about endometrium here

https://brainly.com/question/30682855#

#SPJ11

What does succinate dehydrogenase catalyze the oxidation of succinate to?

Answers

Succinate dehydrogenase (SDH) is an enzyme that plays a critical role in cellular respiration. It catalyzes the oxidation of succinate to fumarate, a process that occurs in the Krebs cycle, also known as the citric acid cycle or tricarboxylic acid cycle (TCA cycle).

During this reaction, two hydrogen atoms are removed from the succinate molecule, and an electron is transferred to a coenzyme, specifically flavin adenine dinucleotide (FAD), to form FADH2.

The FADH2 molecule then donates electrons to the electron transport chain (ETC) in the mitochondria, which ultimately leads to the production of adenosine triphosphate (ATP) through oxidative phosphorylation. This ATP is essential for various cellular functions as it serves as a primary energy source for cells.

In summary, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate, contributing to the Krebs cycle's function and facilitating energy production within cells.

Know more about   Krebs cycle  here:

https://brainly.com/question/6260517

#SPJ11

many species of termites are considered eusocial. what makes these "truly" social animals? (sorry for the anthropomorphisms) distinct reproductive and non-reproductive casts care for young by individuals in the "community" other than the parents individuals from multiple generations living together at the same time all of the above

Answers

Eusocial species, such as termites, are considered truly social animals because they exhibit several characteristics that distinguish them from other social animals.

One key feature is the existence of distinct reproductive and non-reproductive casts, where only a few individuals in the colony reproduce while others care for the young and maintain the nest. This division of labor allows for specialization and efficiency within the colony. Another important characteristic is that individuals from multiple generations live together at the same time, creating a complex society that can adapt to changing conditions.

Additionally, eusocial animals engage in cooperative care of the young by individuals in the "community" other than the parents, promoting the survival of the colony as a whole. All of these traits contribute to the highly organized and cooperative nature of eusocial species.

Learn more about Eusocial species

https://brainly.com/question/16576815

#SPJ4

Other Questions
Why do the plastic companies want us to believe that better sorting will work? someone PLSS HELP ASAPP most large warehouse membership clubs give away samples of the package foodssold in their stores. this is a form of 3. D(-5, -6), E(5, 2), F(4, -4), G(-6, -12) (Distance & Slope Formulas) What are some ways you as the clinician can modify the communicative environment for treatment?- Have interests around the room- Giving or taking support- Give client different roles- Positive feedback and positive communication strategies How is the competitive exclusion principle affected by species population's proximity to carrying capacity? what is expected cognitive development: middle adult (35-65 yrs) The Marshall Plan... O a. Violated the philosophy of containment by propping up economically distressed European countries b. Was an economically strategic maneuver designed to rebuild Western European capitalism c. Was an offshoot of the Displaced Persons Plan O d. All of the Above Choose the correct Lewis structure and calculate the formal charge of each atom in the most important resonance form of ClNOA. Cl = -1; N = +1; O = 0B. Cl = 0; N = 0; O = -2C. Cl = 0; N = 0; O = 0D. Cl = -1; N = -1; O = -2E. none of these What happens to the apple while Jonas is playing with it? (ch. 3) ADH and Pitocin are stored in which gland? e^(-4x) dx over the interval [ 0 , 1 ] Which of the following functionshas a graph with a vertex that istranslated 3 units horizontally to theleft of the vertex of the graph off(x) = (x + 1) - 4?A g(x) = (x + 1) + 4B g(x) = -(x + 3) + 3C g(x) = 2(x + 4) - 4D g(x) = (x - 2) - 4 true or falseThe conversion factor for moles of carbon dioxide to mass of carbon dioxide is:1 mole CO2 44.01 g. how many bronchopulmonary segments does the left lung have? In the second period, the atomic radii decrease as one moves from lithium to neon. TRUE OR FALSE? what is prevention education for risk of motor vehicle/injury in infants and toddlers: A sporting goods store believes the average age of its customers is 35 or less. A random sample of 43 customers was surveyed, and the average customer age was found to be 38.5 years. Assume the standard deviation for customer age is 9.0 years. Using alpha = 0.05, complete parts a and b below. Does the sample provide enough evidence to refute the age claim made by the sporting goods store? Determine the null and alternative hypotheses. 7. In dispersive materials, the angle of refraction for a light ray depends on the wavelength of the light. Does the angle of reflection from the surface of the material depend on the wavelength? Why or why not? A 13-year-old with structural scoliosis has Cotrel-Dubousset rods inserted. Which position would be best during the post-operative period?