In 2005, the property crime rates (per 100,000 residents) for the 50 states and the District of Columbia had a mean of 3477 and a standard deviation of 747. Assuming the distribution of property crime rates is normal, what percentage of the states had property crime rates between 3362 and 4055?

Answers

Answer 1

For a normal distribution of property crime rates (per 100,000 residents) for the 50 states, percentage of the states had property crime rates between 3362 and 4055 is equals to the 44.1%.

In 2005, We have property crime rates for the 50 states and the District of Columbia. The rate is per 100,000 residents. Mean = 3477

Standard deviations = 747

Consider the distribution of property crime rates is normal distribution. We have to determine the percentage of the states had property crime rates between 3362 and 4055, P( 3362 < X < 4055).

Using the Z-Score formula for normal distribution, [tex]z = \frac{X- \mu}{\sigma} [/tex]

where X --> observed value

mu --> mean

sigma --> standard deviations

For observed value, X = 3362

[tex]z = \frac{ 3362 - 3477}{747}[/tex]

= −0.154

For observed value, X = 4055

[tex]z = \frac{ 4055 - 3477}{747}[/tex]

= 0.774

Now, the required probability, P( 3362 < X < 4055) can be written as

[tex]= P( \frac{ 3362 - 3477}{747} < \frac{ X - \mu}{\sigma} <\frac{4055 - 3477}{747} )[/tex]

= P( -0.15 < z <0.77 )

= P(z< 0.77) - P( z < - 0.15)

Using the normal distribution table,

= 0.441 - 0.881

= P( 3362 < X < 4055) = 0.441

Hence required percentage value is equals to 44.1%.

For more information about normal distribution, visit :

https://brainly.com/question/4079902

#SPJ4


Related Questions

Could someone answer this please

Answers

The measures of the angles, and arcs and areas of the circles are;

9) m[tex]\widehat{KIG}[/tex] = 260°

10) m∠SRT = 66°

11) 18.59

12) 557.36 m²

13) 56.55 inches

14) 113.1 cm

What is an arc of a circle?

An arc is a part of the circumference of a circle.

9) The measure of the arc KIG, m[tex]\widehat{KIG}[/tex] is the difference between the sum of the angles at a point and 100°, therefore;

m[tex]\widehat{KIG}[/tex] = 360° - 100° = 260°

10), Angles ∠SRW and ∠SRT are linear pair angles, therefore;

m∠SRW + m∠SRT = 180°

m∠SRW = 114°

Therefore; m∠SRT = 180° - 114° = 66°

11) The length, l, of the shaded arc can be obtained as follows;

l = (71/360) × 2 × π × 15 m ≈ 18.59 m

12) The area of the shaded sector, A, can be obtained from the area of a sector as follows;

A = (221/360) × π × 17² ≈ 557.36 m²

13) The circumference of the circle can be found using the equation;

Circumference = 18 inches × π ≈ 56.55 inches

14) The area of the circle of radius 6 cm can be found as follows;

Area = π × (6 cm)² ≈ 113.1 cm²

Learn more on the area and circumference of a circle here: https://brainly.com/question/31071297

#SPJ1

A nutritionist would like to determine the proportion of students who are vegetarians. He surveys a random sample of 585 students and finds that 54 of these students are vegetarians. Using this information, construct a 99% confidence level and lable the upper and lower bounds.

Answers

The 99% confidence interval is (0.060, 0.124). This means the nutritionist can be 99% confident that the true proportion of vegetarian students lies between 6% and 12.4%. The lower bound is 6% and the upper bound is 12.4%.

To construct a 99% confidence level for the proportion of students who are vegetarians, we can use the following formula:

p ± z√(p(1-p)/n)

where p is the sample proportion of vegetarians, z is the z-score corresponding to the desired level of confidence (99% in this case), and n is the sample size.

From the problem, we know that p = 54/585 = 0.0923, and n = 585. To find the value of z, we can use a table of standard normal probabilities or a calculator. For a 99% confidence level, z = 2.576.

Plugging in these values, we get:

0.0923 ± 2.576√(0.0923(1-0.0923)/585)

Simplifying, we get:

0.0923 ± 0.0277

Therefore, the 99% confidence interval for the proportion of students who are vegetarians is (0.0646, 0.1199). The lower bound is 0.0646 and the upper bound is 0.1199. This means that we are 99% confident that the true proportion of vegetarians among all students is between 6.46% and 11.99%.
To construct a 99% confidence interval for the proportion of students who are vegetarians, we need to use the following formula:

CI = p ± Z√(p(1-p)/n)

where CI represents the confidence interval, p is the proportion of vegetarians in the sample, Z is the Z-score for a 99% confidence level, and n is the sample size.

In this case, p = 54/585 ≈ 0.092, Z ≈ 2.576 (for a 99% confidence level), and n = 585.

Now, plug in the values:

CI = 0.092 ± 2.576√(0.092(1-0.092)/585)
CI = 0.092 ± 0.032

The 99% confidence interval is (0.060, 0.124). This means the nutritionist can be 99% confident that the true proportion of vegetarian students lies between 6% and 12.4%. The lower bound is 6% and the upper bound is 12.4%.

To learn more about confidence interval, click here:

brainly.com/question/24131141

#SPJ11

a. Exercise Statement: A researcher claims that the mean age of the residents of a small town is more than 38 years. The ages (in years) of a random sample of 30 residents are listed below. At α=0.10, is there enough evidence to support the researcher's claim? Assume the population is normally distributed.

Answers

The sample mean of 43.4 is greater than the hypothesized population mean of 38, which supports the researcher's claim that the mean age of the residents is more than 38 years.

The sample mean is calculated by adding up all the ages and dividing by the sample size, which gives us:

x = (40 + 42 + 44 + ... + 50)/30 = 43.4

The sample standard deviation is calculated using the formula:

s = √[Σ(xi - x)²/(n-1)]

where xi is the age of each resident in the sample. We will not calculate s here, but assume that it has been calculated and is known.

Next, we will calculate the test statistic using the formula:

t = (x - μ)/(s/√n)

where μ is the hypothesized population mean (38 in this case) and n is the sample size (30). Plugging in the values, we get:

t = (43.4 - 38)/(s/√30)

The critical value from the t-distribution can be found using a t-table or a calculator, with degrees of freedom equal to n - 1 = 29. For a one-tailed test at α = 0.10, the critical value is 1.310.

If the calculated test statistic is greater than the critical value, we reject the null hypothesis and accept the alternative hypothesis. If the calculated test statistic is less than or equal to the critical value, we fail to reject the null hypothesis.

To know more about distribution here

https://brainly.com/question/29509087

#SPJ4

A population has parameters p = 126.5 and o = 72.6. You intend to draw a random sample of size n = 161. What is the mean of the distribution of sample means? Hi = What is the standard deviation of the distribution of sample means? (Report answer accurate to 2 decimal places.) 0 =

Answers

The mean of sample means is p=126.5, while the standard deviation (standard error) can be calculated as SE=5.72 using the formula SE=o/sqrt(n), where o is the population standard deviation and n is the sample size.

The mean of the distribution of sample means is equal to the population mean, which is p = 126.5.

The standard deviation of the distribution of sample means, also known as the standard error, can be calculated using the formula:

SE = o / sqrt(n)

where o is the population standard deviation and n is the sample size. Substituting the given values, we get:

SE = 72.6 / sqrt(161) = 5.72

Therefore, the standard deviation of the distribution of sample means is 5.72 (accurate to 2 decimal places).

Learn more about standard deviation here: brainly.com/question/23907081

#SPJ11

Unit 3:
3. The heights of adult women are approximately normally distributed about a mean of 65 inches with a standard deviation of 2 inches. If Rachel is at the 99th percentile in height for adult woman, then her height, in inches, is closest to
(A) 60
(B) 62
(C) 68
(D) 70
(E) 74

Answers

For the given Problem, The correct option giving Rachel's height in inches is (D) 70.

What does "z-score" mean?

A z-score, also called standard score, can be used to measure- how much an observation or data point deviates from the mean of the distribution. By Subtracting the mean of the given distribution from the observation and after that dividing it by the standard deviation will give us the z-score for given observations.

Given:

Mean height (μ) = 65 inches

Standard deviation (σ) = 2 inches

Percentile (P) = 99%

The Z-score, commonly known as the standard score, helps in quantifying how much a data point deviates from the mean. It can be computers as:

[tex]Z = (X - \mu) / \sigma[/tex]

where X is the value of the data point.

We can rearrange the equation to solve for X:

[tex]X = Z * \sigma + \mu[/tex]

We may use a regular normal distribution table or a Z-table to obtain the Z-score corresponding to the 99th percentile. The Z-score for the 99th percentile is roughly 2.33.

[tex]X = 2.33 * 2 + 65\\\\X = 4.66 + 65\\\\X = 69.66\\\\{X}\;\approx70\; inches[/tex]

Learn more about Z-score here:

https://brainly.com/question/15016913

#SPJ1

Let X be a random variable with the following probability distribution. Value x of X P(X=x) 4 0.10 5 0.05 6 0.10 7 0.35 8 0.40 Complete the following. (If necessary, consult a list of formulas.) Х 5 ? (a) Find the expectation E(X) of x. E(x) = 0 (b) Find the variance Var(x) of X. Var(x) - 0

Answers

The expectation of X is 6.95, the variance of X is 0.8025.

(a) The expectation of X is calculated as the weighted sum of the possible values of X, where the weights are given by their respective probabilities:

E(X) = 4(0.10) + 5(0.05) + 6(0.10) + 7(0.35) + 8(0.40) = 6.95

Therefore, the expectation of X is 6.95.

(b) The variance of X is given by the formula:

Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2

To calculate the first term, we need to find E(X^2):

E(X^2) = 4^2(0.10) + 5^2(0.05) + 6^2(0.10) + 7^2(0.35) + 8^2(0.40) = 55.55

Then, we can calculate the variance:

Var(X) = E(X^2) - [E(X)]^2 = 55.55 - 6.95^2 = 0.8025

Therefore, the variance of X is 0.8025

learn about variance,

https://brainly.com/question/25639778

About 9% of people are left-handed. Suppose 5 people are selected at random.
(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(c) What is the probability that not all of the people are right-handed?

Answers

The following parts can be answered by the concept of Probability.

(a) The probability that all 5 people selected at random are right-handed is very low, as only about 9% of the population is left-handed.

(b) The probability that all 5 people selected at random are left-handed is even lower, as only about 9% of the population is left-handed.

(c) The probability that not all of the people selected at random are right-handed is relatively high, given that the majority of the population is right-handed.

(a) To calculate the probability that all 5 people selected at random are right-handed, we can use the probability of an individual being right-handed, which is approximately 91% (100% - 9% left-handed). Since the selection of each person is independent, we can multiply the probabilities together:

P(all are right-handed) = P(right-handed)⁵ = 0.91⁵

(b) Similarly, to calculate the probability that all 5 people selected at random are left-handed, we can use the probability of an individual being left-handed, which is approximately 9%. Again, since the selection of each person is independent, we can multiply the probabilities together:

P(all are left-handed) = P(left-handed)⁵ = 0.09⁵

(c) The probability that not all of the people selected at random are right-handed can be calculated by subtracting the probability that all 5 people are right-handed from 1, since the only other possibility is that at least one of them is left-handed:

P(not all are right-handed) = 1 - P(all are right-handed) = 1 - 0.91⁵

Therefore, the answers are:

(a) The probability that all 5 people selected at random are right-handed is 0.91⁵.

(b) The probability that all 5 people selected at random are left-handed is 0.09⁵.

(c) The probability that not all of the people selected at random are right-handed is 1 - 0.91⁵.

To learn more about Probability here:

brainly.com/question/30034780#

#SPJ11

Given y′=7/x with y(e)=29y Find y(e^2)

Answers

The solution to the differential equation y' = 7/x with the initial condition y(e) = 29 is y = 7 ln(x) + 22, and thus y(e²) = 36.

This is a first-order differential equation that can be solved using separation of variables.

Separating variables, we get

y' dx = 7/x dx

Integrating both sides, we get

∫ y' dx = ∫ 7/x dx

y = 7 ln(x) + C₁, where C₁ is the constant of integration

To find C₁, we can use the initial condition y(e) = 29

y(e) = 7 ln(e) + C₁

29 = 7 + C₁

C₁ = 22

So, the particular solution to the differential equation is:

y = 7 ln(x) + 22

Now we can find y(e²):

y(e²) = 7 ln(e²) + 22

y(e²) = 7(2) + 22

y(e²) = 36

Learn more about first-order differential equation here

brainly.com/question/30645878

#SPJ4

Use the given frequency distribution to approximate the mean. Class: 0-9, 10-19, 20-29, 30-39, 40-49. Freq: 18,18, 9,9,9

Answers

The approximate mean of this frequency distribution is 20.21.

To approximate the mean:

We need to find the midpoint of each class and multiply it by the corresponding frequency.

Then we add up all of these products and divide by the total number of values.

Midpoints: 4.5, 14.5, 24.5, 34.5, 44.5

Products: (18)(4.5) + (18)(14.5) + (9)(24.5) + (9)(34.5) + (9)(44.5) = 1273.5

Total number of values: 63

Approximate mean: 1273.5/63 = 20.2142857143

To learn more about the mean;

brainly.com/question/13451489

#SPJ1

Explain The Sampling Distribution of the Sample Mean (Central Limit Theorem).

Answers

The Central Limit Theorem is a statistical concept that describes the behavior of sample means when samples are taken from a population with any distribution. It states that as the sample size increases, the distribution of sample means will approach a normal distribution regardless of the shape of the original population distribution.

In other words, the sampling distribution of the sample mean will become approximately normal, with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.

This theorem is important in statistics because it allows us to use the properties of the normal distribution to make inferences about the population mean, even if we do not know the population distribution. It also provides a basis for hypothesis testing and confidence interval estimation.

Learn more about Central Limit Theorem

https://brainly.com/question/18403552

#SPJ4

when describing quantitative data, an outlier group of answer choicesis a data point that does not fit the main pattern of the data.is always a data point with an unrealistic or even impossible value.is always a data entry error.is any point flagged by the 1.5 times iqr.

Answers

When describing quantitative data, an outlier a. is a data point that does not fit the main pattern of the data.

In statistics, an outlier is a data point that dramatically deviates from the overall pattern or trend of the data. It is an observation that, in a population-based random sampling, deviates unusually from the other values. Outliers can skew the overall analysis or interpretation of the data since they are either greater or lower than the bulk of the data points. As a data point that does not fit the predominant pattern of the data, an outlier is precisely defined as such.

Option (b) is not always accurate since outliers may have reasonable values, despite being rare. Option (c) is not always accurate, though, as data input mistakes may not always be the cause of outliers. Because not all probable outliers can be identified using the 1.5 times the interquartile range (IQR), which is a popular approach, option (d) is inaccurate.

Complete Question:

When describing quantitative data, an outlier

a. is a data point that does not fit the main pattern of the data.

b. is always a data point with an unrealistic or even impossible value.

c. is always a data entry error.

d. is any point flagged by the 1.5 times iqr.

Read more about outlier on:

https://brainly.com/question/3631910

#SPJ4

Triangle RST has the coordinates R(1 , 3), S(3 , 8), and T(5 , 3). Which of the following sets of points represents a dilation from the origin of triangle RST?
A.
R'(5 , 15), S'(15 , 40), T'(25, 15)
B.
R'(5 , 3), S'(3 , 40), T'(25 , 3)
C.
R'(5 , 3), S'(15 , 8), T'(25 , 3)
D.
R'(6 , 8), S'(8 , 13), T'(10 , 8)

Answers

the answer is A. R(2, 6), S(6, 16), T(10, 6), which represents a dilation from the origin with a factor of 2.

What is dilation?

resizing an object is accomplished through a change called dilation. The objects can be enlarged or shrunk via dilation. A shape identical to the source image is created by this transformation. The size of the form does, however, differ. A dilatation ought to either extend or contract the original form. The scale factor is a phrase used to describe this transition.

The scale factor is defined as the difference in size between the new and old images. An established location in the plane is the center of dilatation. The dilation transformation is determined by the scale factor and the center of dilation.

Let's check each set of points to see if it represents a dilation from the origin:

A. R(2, 6), S(6, 16), T(10, 6)

The distance between the origin and R' is sqrt(2^2 + 6^2) = 2sqrt(10).

The distance between the origin and S' is sqrt(6^2 + 16^2) = 2sqrt(73).

The distance between the origin and T' is sqrt(10^2 + 6^2) = 2sqrt(34).

The distances are all twice the corresponding distances of the original triangle, so this set of points represents a dilation from the origin with a factor of 2.

Therefore, the answer is A. R(2, 6), S(6, 16), T(10, 6), which represents a dilation from the origin with a factor of 2.

Learn more about dilation, by the following link

https://brainly.com/question/3457976

#SPJ1

Evaluate the integral: S2 0 (y-1)(2y+1)dy

Answers

The value of the integral is: S₂ 0 (y-1) (2y+1)dy = (16/3) - 2 - 2 = 8/3.

To evaluate the integral S₂ 0 (y-1) (2y+1)dy, we can use the distributive property of integration and split the integrand into two separate integrals:

S₂ 0 (y-1)(2y+1)dy = S₂0 (2y² - y - 1)dy

= S₂ 0 2y² dy - S₂ 0 y dy - S₂ 0 1 dy

Now, we can integrate each of these separate integrals:

S₂ 0 2y² dy = (2/3) y³ |2 0 = (2/3) * 8 = 16/3

S₂ 0 y dy = (1/2) y² |2 0 = (1/2) * 4 = 2

S₂ 0 1 dy = y |2 0 = 2

Therefore, the value of the integral is:

S₂ 0 (y-1)(2y+1)dy = (16/3) - 2 - 2 = 8/3.

Learn more about “ property of integration “ visit here;

https://brainly.com/question/31585464

#SPJ4

Find the equation for the plane through the points Po(1, -5,3), Q,(-1, -5, -1), and Ro(3,5,-4). LE Using a coefficient of 20 for x, the equation of the plane is 20x- 11y - 10z = 45 (Type an equation.)

Answers

The equation of the plane passing through the points Po(1, -5,3), Q,(-1, -5, -1), and Ro(3,5,-4), using a coefficient of 20 for x, is 20x - 11y - 10z = 45.

To find the equation of the plane passing through three non-collinear points, we can use the cross product of the vectors formed by subtracting one point from the other two points. Here are the steps:

Step 1: Find two vectors on the plane.

Let's take vector PQ from point P to point Q as PQ = Q - P = (-1, -5, -1) - (1, -5, 3) = (-2, 0, -4), and vector PR from point P to point R as PR = R - P = (3, 5, -4) - (1, -5, 3) = (2, 10, -7).

Step 2: Find the cross product of the two vectors.

The cross product of two vectors PQ and PR is given by the formula: N = PQ x PR = (PQy × PRz - PQz × PRy, PQz × PRx - PQx × PRz, PQx × PRy - PQy × PRx).

Substituting the values we found in Step 1, we get:

N = (-2 × -7 - -4 × 10, -4 × 2 - -2 × -7, -2 × 10 - 0 × 2) = (-14 - (-40), 8 - 14, -20) = (26, -6, -20).

Step 3: Write the equation of the plane using the normal vector.

The equation of a plane passing through a point (x0, y0, z0) with a normal vector N = (A, B, C) is given by the equation: Ax + By + Cz = D, where D = Ax0 + By0 + Cz0.

Substituting the values we found in Step 2, we get:

26x - 6y - 20z = D.

Step 4: Substitute one of the given points to find the value of D.

Let's substitute point P(1, -5, 3) into the equation:

26 × 1 - 6 × -5 - 20 × 3 = D

26 + 30 - 60 = D

D = -4.

Therefore, the equation of the plane passing through the points Po(1, -5,3), Q,(-1, -5, -1), and Ro(3,5,-4), using a coefficient of 20 for x, is 20x - 11y - 10z = 45.

To learn more about coefficient here:

brainly.com/question/28975079#

#SPJ11

the only pure-time 2nd-order ODEs that we can solve with methods from class are of the form y''=c, and in this case, all solutions are parabolas y(t)=c/2*t^2 +bt+1 for some constants a, b, and c.
a. true b. false

Answers

False
While it is true that the general solution of a 2nd-order ODE of the form y''=c is given by y(t)=c/2*t^2 +bt+1, not all solutions are parabolas. Parabolas are a specific type of quadratic function with a constant value of a, which determines the curvature. In this general solution, 'a' is represented by c/2, and it can take any real value. So, although the solutions are quadratic functions, they are not necessarily parabolas.

For more questions like parabolas visit the link below:

https://brainly.com/question/11911877

#SPJ11

259 1813 6 : 36 Given the geometric sequence: 37, Find an explicit formula for an. an Find a 10 =

Answers

The explicit formula for the given geometric sequence is an = 259 * 7^(n-1), and the 10th term is approximately 4,187,149.

We finding an explicit formula for the geometric sequence and the value of the 10th term. First, let's identify the terms given in the question:

a1 = 259 a2 = 1813 a3 = 6 a4 = 36 a5 = 37

Now, let's find the common ratio (r) between the consecutive terms: r = a2 / a1 = 1813 / 259 ≈ 7

Now that we have the first term (a1) and the common ratio (r), we can write the explicit formula for the geometric sequence:

an = a1 * r^(n-1)

In this case, the formula would be:

an = 259 * 7^(n-1)

To find the 10th term (a10), we will substitute n with 10:

a10 = 259 * 7^(10-1)

a10 = 259 * 7^9

Finally, we will calculate the value of a10: a10 ≈ 4,187,149

So, the explicit formula for the given geometric sequence is an = 259 * 7^(n-1), and the 10th term is approximately 4,187,149.

Learn more about explicit formula,

https://brainly.com/question/24198356

#SPJ11

Find the critical value or values of based on the given information. H1: σ < 26.1 n = 29 = 0.01

Answers

The critical value is -2.763. If the test statistic falls below this value, we will reject the null hypothesis in favor of the alternative hypothesis.

Based on the given information, we are looking for the critical value(s) of a hypothesis test with H1: σ < 26.1, a sample size (n) of 29, and a significance level (α) of 0.01.

As the alternative hypothesis (H1) suggests a one-tailed test, we will look for a critical value in the left tail of the distribution. Since the sample size is relatively small (n = 29) and the population standard deviation (σ) is unknown, we should use the t-distribution.

To find the critical value, we need to determine the degrees of freedom (df). In this case, df = n - 1 = 29 - 1 = 28.

Using a t-distribution table or a calculator, look for the value that corresponds to a significance level (α) of 0.01 and degrees of freedom (df) of 28. The critical t-value for this test is approximately -2.763.

Therefore, the critical value is -2.763. If the test statistic falls below this value, we will reject the null hypothesis in favor of the alternative hypothesis.

To learn more about critical value here:

brainly.com/question/30168469#

#SPJ11

Find the nth degree Taylor polynomial T, for n = 0, 1, 2, and 3 generated by the function f(x) = VT+4 about the point < =0. = Το(α) = Σ Τ, (α) - M Τ5(α) = M T3(α) : M

Answers

The Taylor polynomials T, for n = 0, 1, 2, and 3 generated by f are;  6(x - 1), 6(x - 1) - 3(x - 1)², and 6(x - 1) - 3(x - 1)² + 2(x - 1)³.

The Taylor polynomial of order 1, denoted by P1(x), is a linear polynomial that approximates f(x) near the point a. To find this polynomial, we first need to find the first derivative of f(x), which is f'(x) = 6/x.

Evaluating this derivative at the point a, we have f'(1) = 6, so the equation of the tangent line to the graph of f(x) at the point x = 1 is y = 6(x - 1) + 0. Simplifying this expression, we get

M 1(x) = 6(x - 1).

The Taylor polynomial of order 2, M 2(x), is a quadratic polynomial that approximates f(x) near the point a.

we first need to find the second derivative of f(x), which is;

f''(x) = -6/x².

Evaluating this derivative at the point a, we have f''(1) = -6,

Thus the equation of the quadratic polynomial that f(x) near the point x = 1 is

y = 6(x - 1) + (-6/2)(x - 1)².

Simplifying this expression, we get

 M 2(x) = 6(x - 1) - 3(x - 1)².

Finally, the Taylor polynomial of order 3, M 3(x), is a cubic polynomial that approximates f(x) near the point a.

To find this polynomial, we first need to find the third derivative of f(x), which is f'''(x) = 12/x³.

y = 6(x - 1) - 3(x - 1)² + (12/3!)(x - 1)³.

Simplifying this expression, we get;

M 3(x) = 6(x - 1) - 3(x - 1)² + 2(x - 1)³.

To know more about polynomial here;

brainly.com/question/11536910

#SPJ4

A random sample of size 49 is taken from a population with mean µ = 25 and standard deviation σ = 5.

The probability that the sample mean is greater than 26 is ______.

Multiple Choice

0.4896

0.3546

0.0808

0.7634

Answers

In this case, σ = 5 and n = 49, so the standard error of the mean is 5/√49 = 0.714.
Finally, we can look up the probability of z-scores being greater than 1.4 in a standard normal distribution table or use a calculator to find that the probability is 0.0808.
Therefore, the answer is 0.0808.

The probability that the sample mean is greater than 26 can be calculated using the standard error of the mean formula, which is σ/√n, where σ is the population standard deviation and n is the sample size.

To solve this problem, we'll use the z-score formula for a sample mean:

z = (x- µ) / (σ / √n)

where x is the sample mean, µ is the population mean, σ is the population standard deviation, and n is the sample size.

In this problem, we are given the following values:
µ = 25
σ = 5
n = 49

We want to find the probability that the sample mean is greater than 26, so x = 26. Now, let's find the z-score:

Next, we need to standardize the sample mean using the z-score formula, which is (x - µ) / (σ/√n), where x is the sample mean, µ is the population mean, σ is the population standard error, and n is the sample size.
In this case, x = 26, µ = 25, σ = 5, and n = 49, so the z-score is (26 - 25) / (5/√49) = 1.4.

Now we'll use a z-table to find the probability of getting a z-score of 1.4 or greater. From the table, the probability of getting a z-score up to 1.4 is 0.9192. Since we want the probability of getting a z-score greater than 1.4, we'll subtract this value from 1:

1 - 0.9192 = 0.0808
Therefore, the probability that the sample mean is greater than 26 is 0.0808. The correct answer is: 0.0808

Learn more about Standard Error:

brainly.com/question/13179711

#SPJ11

what is the result of of 4.50 x 10⁻¹² × 3.67 x 10⁻¹²=

Answers

The result of given expression 4.50 x 10⁻¹² × 3.67 x 10⁻¹² is 0.16515 x 10⁻²², or 1.6515 x 10⁻²³.

To multiply these two numbers in scientific notation, we need to multiply the two coefficients (4.50 and 3.67) and add the exponents (-12 and -12). This gives us:

(4.50 x 10⁻¹²) × (3.67 x 10⁻¹²) = (4.50 × 3.67) x 10⁻²⁴

Multiplying the coefficients gives us:

4.50 × 3.67 = 16.515

So the expression simplifies to:

(4.50 x 10⁻¹²) × (3.67 x 10⁻¹²) = 16.515 x 10⁻²⁴

This result can also be written in scientific notation by converting 16.515 to a number between 1 and 10 and adjusting the exponent accordingly. We can do this by dividing 16.515 by 10 until we get a number between 1 and 10, and then adding the number of times we divided by 10 to the exponent -24. In this case, we can divide by 10 twice:

16.515 / 10 / 10 = 0.16515

We divided by 10 twice, so we add 2 to the exponent -24:

0.16515 x 10⁻²²

To learn more about expression click on,

https://brainly.com/question/25147394

#SPJ4

Find the integral of the given Lagrange equation. xyp + y2q = zxy - 2x2

Answers

The integral of the Lagrange equation xyp + y²q = zxy - 2x² is:

∫f(x,y)dxdy = ∫(yp - zx)dx + ∫(xp + 2yq)dy = ypx - (1/2)z x² + x(1/2)y² + qy + C

where the integral is taken over the appropriate region of x and y.

To solve this problem, we can use the Lagrange equation, which relates the total differential of a function z = f(x,y) to the partial derivatives of f with respect to x and y, and to the differentials of x and y themselves. The equation is:

df = (∂f/∂x)dx + (∂f/∂y)dy

We are given the Lagrange equation xyp + y²q = zxy - 2x², where p and q are constants. We can interpret this equation as a function z = f(x,y), where:

f(x,y) = xyp + y²q - zxy + 2x²

We want to find the integral of this function, which means we need to find an antiderivative of df. To do this, we can use the Lagrange equation and rewrite it as:

df = (yp - zx)dx + (xp + 2yq)dy

Now we can integrate both sides of this equation with respect to their respective variables:

∫df = ∫(yp - zx)dx + ∫(xp + 2yq)dy

The left-hand side simplifies to:

f(x,y) + C

where C is the constant of integration. To find the antiderivatives on the right-hand side, we need to treat one variable as a constant and integrate with respect to the other. Let's integrate with respect to x first:

∫(yp - zx)dx = ypx - (1/2)z x² + g(y)

where g(y) is a function of y only that arises from the constant of integration in the x integral. Now we can integrate with respect to y:

∫(xp + 2yq)dy = x(1/2)y² + qy + h(x)

where h(x) is a function of x only that arises from the constant of integration in the y integral. Adding these two antiderivatives and the constant of integration, we get:

f(x,y) = ypx - (1/2)z x² + x(1/2)y² + qy + C

Learn more about Lagrange equation :

https://brainly.com/question/30889422

#SPJ4

the mean number of recalls a leading car manufacturer has in a year is seven. what type of probability distribution would be used to determine the probability that in a given year, there will be at most five recalls?

Answers

The probability distribution that would be used to determine the probability that in a given year, there will be at most five recalls for a leading car manufacturer is the Poisson distribution.

The Poisson distribution is commonly used to model the number of rare events occurring over a fixed interval of time or space. In this case, the mean number of recalls in a year is given as seven, which satisfies the conditions for the Poisson distribution. By using the Poisson distribution, we can calculate the probability of having at most five recalls in a given year.

The Poisson distribution is a discrete probability distribution that models the number of events that occur in a fixed interval of time or space, given that these events occur independently and with a constant rate λ. The Poisson distribution is often used to model rare events, such as the number of defects in a production process, the number of accidents in a given day, or the number of customers arriving at a store in a given hour.

To learn more about probability, click here:

https://brainly.com/question/30034780

#SPJ11

Complete the following:

a) Find the critical values of f (if any)

b) Find the open interval(s) on which the function is increasing or decreasing

c) Apply the First Derivative Test to identify all relative extrema (maxima or minima)

1. F(x) = x² + 2x - 1

Answers

There is no critical values of f. The function is decreasing on (-infinity,-1) and increasing on (-1, infinity). There is a relative minimum at x= -1.

Since f(x) is a quadratic function, it does not have any critical values.

To find where the function is increasing or decreasing, we need to find the sign of its first derivative

f'(x) = 2x + 2

f'(x) > 0 for x > -1 (function is increasing)

f'(x) < 0 for x < -1 (function is decreasing)

To find the relative extrema, we need to set the first derivative equal to zero and solve for x

2x + 2 = 0

x = -1

This critical point is a relative minimum, since the function changes from decreasing to increasing at x = -1.

Therefore, the relative minimum of f(x) occurs at x = -1, and the function is increasing for x > -1 and decreasing for x < -1.

To know more about maxima or minima:

https://brainly.com/question/29094468

#SPJ4

50 Points
Find the value of x!!! Quick

Answers

The value of x in the figure is 5.

What is the value of x?

Chord chord Theorem states that If two chords of a circle intersect, then the product of the measures of the parts of one chord is equal to the product of the measures of the parts of the other chord.

From the image:

NO × OP = QO × OR

Plug in the values:

( 3x - 3 ) × 8 = ( 2x + 6 ) × 6

Solve for x

8×3x - 3×8 = 6×2x + 6× 6

8×3x - 3×8 = 6×2x + 6× 6

24x - 24 = 12x + 36

24x - 12x = 36 + 24

12x = 60

x = 60/12

x = 5

Therefore, x equals 5.

Learn more about chord chord Theorem here: https://brainly.com/question/15298662

#SPJ1

What is the interquartile range of 11222456788

Answers

The interquartile range (IQR) is a measure of statistical dispersion and is calculated as the difference between the upper quartile (Q3) and the lower quartile (Q1) of a dataset. To calculate the IQR for the dataset 11222456788, we first need to find the values of Q1 and Q3.

The dataset 11222456788 has 11 values. The median value (Q2) is the middle value when the dataset is arranged in ascending order. In this case, the median value is 4.

To find Q1, we take the median of the lower half of the dataset (not including the median value). The lower half of the dataset is 11222, so Q1 is 2.

To find Q3, we take the median of the upper half of the dataset (not including the median value). The upper half of the dataset is 56788, so Q3 is 7.

The IQR is calculated as Q3 - Q1 = 7 - 2 = 5. So, the interquartile range of the dataset 11222456788 is 5.

I'm sorry to bother you but can you please mark me BRAINLEIST if this ans is helpfull

1. What is the area of a circle with a diameter of 8 cm?

Answers

Answer:

The area of the circle is 16π square centimeters. If you need a decimal approximation, you can use 3.14 or a more precise value of π depending on the level of accuracy required.

Step-by-step explanation:

To find the area of a circle with a diameter of 8 cm, we need to use the formula for the area of a circle, which is:

[tex]\sf\qquad\dashrightarrow A = \pi r^2[/tex]

where:

A is the arear is the radius

We know that the diameter is 8 cm, so we can find the radius by dividing the diameter by 2:

[tex]\sf:\implies Radius = \dfrac{Diameter}{2} = \dfrac{8}{2} = 4 cm[/tex]

Now we can substitute the radius into the formula for the area:

[tex]\sf:\implies A = \pi (4)^2[/tex]

Simplifying:

[tex]\sf:\implies A = \pi(16)[/tex]

[tex]\sf:\implies \boxed{\bold{\:\:A = 16\pi \:\:}}\:\:\:\green{\checkmark}[/tex]

Therefore, the area of the circle is 16π square centimeters. If you need a decimal approximation, you can use 3.14 or a more precise value of π depending on the level of accuracy required.

Which statements are true for the functions g(x) = x2 and h(x) = –x2 ? Check all that apply.

For any value of x, g(x) will always be greater than h(x).
For any value of x, h(x) will always be greater than g(x).
g(x) > h(x) for x = -1.
g(x) < h(x) for x = 3.
For positive values of x, g(x) > h(x).
For negative values of x, g(x) > h(x).

Answers

For the given function, any value of x, g(x) will always be greater than h(x). FALSE. For any value of x, h(x) will always be greater than g(x). FALSE. g(x) > h(x) for x = -1. TRUE. g(x) < h(x) for x = 3. TRUE. For positive values of x, g(x) > h(x). TRUE. For negative values of x, g(x) > h(x). FALSE

What is function?

In mathematics, a function is a rule that assigns a unique output value to each input value. It is a relationship between a set of inputs and a set of possible outputs, where each input has exactly one corresponding output.

According to given information:

The statements are related to the comparison between the functions [tex]g(x) = x^2\ and\ h(x) = -x^2.[/tex]

For any value of x, g(x) will always be greater than h(x). FALSE

This statement is false because for negative values of x, h(x) will be greater than g(x). For example, if x = -2, then g(x) = 4 and h(x) = -4.

For any value of x, h(x) will always be greater than g(x). FALSE

This statement is false for the same reason as statement 1.

g(x) > h(x) for x = -1. TRUE

This statement is true because g(-1) = 1 and h(-1) = -1, and 1 > -1.

g(x) < h(x) for x = 3. TRUE

This statement is true because g(3) = 9 and h(3) = -9, and 9 < -9.

For positive values of x, g(x) > h(x). TRUE

This statement is true because for any positive value of x, g(x) will always be positive and h(x) will always be negative, and any positive number is greater than any negative number.

For negative values of x, g(x) > h(x). FALSE

This statement is false because for negative values of x, h(x) will be greater than g(x), as explained in statement 1.

To know more about function visit:

https://brainly.com/question/11624077

#SPJ1

Answer: C, E, F

Step-by-step explanation:

a 1. Find the coefficients a and b such that Df(x,y)(h,k) = ah+bk where f:R? → Ri ? f,y given by S(r; 1) = 5.5" eldt.

Answers

The resulting function of the given relation is f(x) = x² - 1 / 2

The term function is referred as the mathematical process that uniquely relates the value of one variable to the value of one (or more) other variables.

Here we need to determine  all functions f:R→R such that f(x−f(y))=f(f(y))+xf(y)+f(x)−1∀x,y∈R

While we have clearly looking into the given problem, we have given that

=>f(x−f(y))=f(f(y))+xf(y)+f(x)−1(1)

Now, we have to Put x=f(y)=0, then we get the result as

=> f(0)=f(0)+0+f(0)−1

Therefore, the value of the function f(0)=1(2)

Now, again we have to put

=> x=f(y)=λ -------------(1)

Then we have to rewrite the relation like the following,

=> f(0)=f(λ)+λ²+f(λ)−1

=>1 = 2f(λ) + λ² − 1 -------------(2)

When we rewrite the function as,

=> f(λ) = λ² - 1 / 2

Therefore, the unique function is

=> f(x) = x² - 1 / 2

To know more about function here.

brainly.com/question/28193995

#SPJ4

Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(x) = 3x + 7 cos(x) F(x) = (-/1 Points) DETAILS SCALC73.9.0

Answers

The most general antiderivative of the function f(x) = 3x + 7cos(x) is F(x) = 3/2x² + 7sin(x) + C, where C is the constant of the antiderivative.

To find the antiderivative of f(x), we use the rules of integration. The antiderivative of 3x with respect to x is (3/2)x^2, using the power rule of integration, which states that the antiderivative of xⁿ is (1/(n+1))xⁿ⁻¹, where n is a constant.

Next, the antiderivative of 7cos(x) with respect to x is 7sin(x), using the rule of integration for cosine, which states that the antiderivative of cos(x) is sin(x).

Finally, since the constant of integration can take any value, we denote it as C.

Putting it all together, the most general antiderivative of f(x) is F(x) = 3/2x² + 7sin(x) + C.

Therefore, the most general antiderivative of the given function is F(x) = 3/2x² + 7sin(x) + C, where C is the constant of the antiderivative.

To learn more about antiderivative here:

brainly.com/question/31396969#

#SPJ11

Lenard is saving money to buy a computer. He saves $58.25 per week. Write the meaning of each product. Use numbers in the fill in the blank items.

(A) The product of 58.25(4) means Lenard will have an additional $
saved
weeks
Choose...
.

(B) The product of 58.25(–3) means Lenard had $

Choose...

weeks ago.

Answers

Lenard will have saved enough money to purchase a computer after 4 weeks of saving $58.25 per week. This demonstrates the importance of setting aside money in order to reach a financial goal.

What is number?

Number is an abstract concept that is used to quantify or measure something. It is a fundamental concept used in mathematics and is used to quantify or measure things such as size, quantity, distance, time, weight, and so on. Number is also used to represent ideas and concepts, such as a phone number, a bank account number, or a product number. Numbers can be written in various forms, such as the decimal system, the binary system, and the hexadecimal system.

(B) The sum of 58.25(4) means Lenard will have a total of $
232.

(C) The difference between 58.25(4) and 232 means Lenard will have a remaining balance of
$ -1.

The product, sum, and difference of 58.25 multiplied by 4 mean that Lenard will have an additional $233 saved over the course of 4 weeks, a total of $232 saved, and a remaining balance of $-1, respectively. This indicates that Lenard will have saved enough money to buy a computer after 4 weeks.

In conclusion, Lenard will have saved enough money to purchase a computer after 4 weeks of saving $58.25 per week. This demonstrates the importance of setting aside money in order to reach a financial goal.

To know more about number click-
http://brainly.com/question/24644930
#SPJ1

Other Questions
how is magma generated along subduction zones? how is magma generated along subduction zones? fluids are dehydrated out of the descending plate, which lowers the melting point of the surrounding mantle. friction from colliding plates melts mantle material. decompression melting of the mantle from weight reduction. radioactive decay melts mantle material. Insulin release results in all of the following physiological effects EXCEPT:increasing glucose uptake by the liver.promoting glycogen storage in skeletal muscle cells.stimulating fat breakdown in the adipose tissues.stimulating amino acid uptake and protein synthesis in skeletal muscle cells. what is the proper time elapse after the falling mass passes the event horizon at until it reaches the singularity 50) NAFTA is primarily what kind of cooperative effort? during a lateral excursion, the maxillary supporting cusp tips on the non working side track over the opposing occlusal surfaces in a ___________ direction Jim is making smoothies for his friends. If 5 ounces of fruit is needed for each smoothie, how many pounds of fruit would he need to make 12 smoothies? Is homeostasis maintained by antagonistic effectors? Use the given frequency distribution to approximate the mean. Class: 0-9, 10-19, 20-29, 30-39, 40-49. Freq: 18,18, 9,9,9 A patient weighs 258 pounds. What is the patients weight in kilograms? Round to the nearest tenth A random sample of size 49 is taken from a population with mean = 25 and standard deviation = 5.The probability that the sample mean is greater than 26 is ______.Multiple Choice0.48960.35460.08080.7634 $200,000 of 6%, 25-year bonds were sold for $160,000 on january 1. the bonds require semiannual interest payments on june 30 and december 31. the entry to record the june 30 interest payment on the bonds would be to: (amortize using straight line) Could someone answer this please A person consumes 2 500 kcal/day while expending 3 500 kcal/day. In a month's time, about how much weight would this person lose if the loss were essentially all from body fat? (Body fat has an energy content of about 4 100 kcal per pound.) 50 PointsFind the value of x!!! Quick What is the interquartile range of 11222456788 Which statements are true for the functions g(x) = x2 and h(x) = x2 ? Check all that apply.For any value of x, g(x) will always be greater than h(x).For any value of x, h(x) will always be greater than g(x).g(x) > h(x) for x = -1. g(x) < h(x) for x = 3. For positive values of x, g(x) > h(x). For negative values of x, g(x) > h(x). 25) How many C2H4 molecules are contained in 45.8 mg of C2H4? The molar mass of C2H4 is 28.05 g/mol.A) 9.83 10^20 C2H4 molecules B) 7.74 10^26 C2H4 moleculesC) 2.71 10^20 C2H4 moleculesD) 3.69 10^23 C2H4 moleculesE) 4.69 10^23 C2H4 molecules both ___ and ___ actions cause the bonds within the cortex to be rearranged and restructured during chemical texture services What effects might an outlier have on a regression equation? Use differentiation to determine whether the integral formula is correct. (4x + 7)-1 + C (4x+7)=2 dx =- + c Yes No