The term "albedo" is used to describe this aspect of a reflecting body, such as a planet
a. Fraction of energy reflected away
b. Fraction of energy reflected towards
c.Fraction of energy mirrored

Answers

Answer 1
Answer is Fraction of energy reflected

Explanation Albedo is the amount of sunlight (solar radiation) reflected by a surface, and is usually expressed as a percentage or a decimal value, with 1 being a perfect reflector and 0 absorbing all incoming light. When talking about albedo, the surface is almost always the surface of a planet like Earth.


Related Questions

a. Fill in the blanks in the following paragraph to identify the properties of mirrors and lenses.

Lenses produce images through _______________, but mirrors produce images through _______________. A _______________ mirror and a _______________ lens focus light at a point. A _______________ mirror and a _______________ lens spread light apart.


b. Compare the signs of ƒ for lenses and mirrors.


c. What kind of image is formed when the image distance is positive? What kind of image is formed when the image distance is negative?

Answers

a. Fill in the blanks in the following paragraph to identify the properties of mirrors and lenses.

Answer :

Lenses produce images through Refraction, but mirrors produce images through Reflection.

A Concave mirror and a convex lens focus light at a point. A convex mirror and a concave lens spread light apart.

b. Compare the signs of ƒ for lenses and mirrors.

Answer :

ƒ represents the focal length in lenses and mirrors.

For Concave lens and mirror - Value of f is always negative .

For convex lens and mirror - Value of f is always positive .

c. What kind of image is formed when the image distance is positive?

Answer: If the image distance is positive - The image will be formed real and inverted.

What kind of image is formed when the image distance is negative?

Answer: If the image distance is negative - The image will be formed virtual and erect .[tex]~[/tex]

compare the peak wavelength of the radiation in the universe at the end of the era of nucleosynthesis with the peak wavelength of the radiation in the universe currently. assume the temperature at the end of the era of nucleosynthesis was 109 k. how much have the wavelengths of the photons in the universe been stretched since that time?

Answers

The wavelengths of the photons in the universe have been stretched by a factor of approximately 3.66 x 10⁸ since the end of the era of nucleosynthesis.

To compare the peak wavelength of the radiation in the universe at the end of the era of nucleosynthesis with the peak wavelength of the radiation in the universe currently, we will first need to find the peak wavelengths at both times. We will use Wien's Law, which states that the peak wavelength (λ) is inversely proportional to temperature (T): λ = b/T, where b is Wien's constant (2.898 x 10⁻³ m*K).

1. Calculate the peak wavelength at the end of the era of nucleosynthesis:
- Temperature (T1) = 10⁹ K
- λ1 = b/T1 = (2.898 x 10⁻³)/(10⁹) = 2.898 x 10⁻¹² m

2. Calculate the current peak wavelength of radiation in the universe:
- Current temperature (T2) = 2.73 K (cosmic microwave background temperature)
- λ2 = b/T2 = (2.898 x 10⁻³)/(2.73) = 1.061 x 10⁻³m

3. Find the stretching factor by dividing the current peak wavelength by the peak wavelength at the end of nucleosynthesis:
- Stretching factor = λ2/λ1 = (1.061 x 10⁻³)/(2.898 x 10⁻¹²) = 3.66 x 10⁸

So, the wavelengths of the photons in the universe have been stretched by a factor of approximately 3.66 x 10⁸since the end of the era of nucleosynthesis.

To learn more about nucleosynthesis https://brainly.com/question/13517558

#SPJ11

(T/F) The reference level is when the GPE can be defined as zero.

Answers

True, when the reference level is when the Gravitational Potential Energy (GPE) can be defined as zero. This is a point where the object's height is considered zero, and thus the GPE at that position is also zero.

Gravitational Potential Energy (GPE) is the energy moved or procured by an item because of an adjustment of its position when it is available in a gravitational field  Simply put, gravitational potential energy is energy that is associated with gravity or the gravitational force. The potential energy that a massive object has in relation to another massive object due to gravity is called gravitational potential energy. It is the potential energy that is associated with the gravitational field and is released when objects fall toward one another. Potential energy is stored when you are above the surface of the Earth. This is called gravitational likely energy (GPE).

learn more about Gravitational Potential Energy (GPE) here

https://brainly.com/question/17511189

#SPJ11

A 6.00 kg block is placed on a 30.0° incline and connected to another block on a 36.87° incline. Although the surfaces are frictionless the blocks do not move. What is the mass in kilograms of the block on the 36.87° incline?
1) 1.80
2) 3.00
3) 4.00
4) 5.00
5) 6.00

Answers

The mass of the block on the 36.87° incline is 4.00 kg, which corresponds to option 3.

To solve this problem, we need to consider the forces acting on each block and set up an equilibrium condition. Since the blocks are not moving, the forces on both inclines must be equal and opposite.

We can use the formula for gravitational force: F = mg, where F is the force, m is the mass, and g is the acceleration due to gravity (approximately 9.81 m/s²).

For the 6.00 kg block on the 30.0° incline, the force acting perpendicular to the incline is F1 = (6.00 kg)(9.81 m/s²)sin(30.0°).

For the unknown mass block on the 36.87° incline, let its mass be M. The force acting perpendicular to the incline is F2 = (M)(9.81 m/s²)sin(36.87°).

Since the blocks are in equilibrium, F1 = F2.

(6.00 kg)(9.81 m/s²)sin(30.0°) = (M)(9.81 m/s²)sin(36.87°)

Solving for M, we find that M ≈ 4.00 kg. Therefore, the mass of the block on the 36.87° incline is 4.00 kg, which corresponds to option 3.

To learn more about mass, refer below:

https://brainly.com/question/15959704

#SPJ11

In simple harmonic motion, when is the magnitude of the acceleration the greatest? (There could be more than one correct choice.)
Check all that apply.
when the displacement is a zero
when the speed is a maximum
when the kinetic energy is a minimum
when the potential energy is a maximum
when the magnitude of the displacement is a maximum

Answers

In simple harmonic motion, the magnitude of the acceleration is the greatest when the following conditions apply:
- When the magnitude of the displacement is a maximum
- When the potential energy is a maximum

In simple harmonic motion, the acceleration of an object is directly proportional to its displacement from the equilibrium position and acts towards the equilibrium position. Thus, the magnitude of acceleration is greatest when the displacement is maximum.

This can be seen from the equation of motion for simple harmonic motion: a = -ω^2 x, where a is the acceleration, x is the displacement from the equilibrium position, and ω is the angular frequency of the motion. As the displacement increases, the magnitude of the acceleration also increases.

On the other hand, the speed is maximum and the kinetic energy is minimum at the equilibrium position, where the displacement is zero. The potential energy is maximum at the maximum displacement from the equilibrium position, where the magnitude of the acceleration is also maximum.

Learn more about simple harmonic motion at: https://brainly.com/question/26114128

#SPJ11

A person weighs 784 N on Earth. On the moon, g = 1.60 m/s^2. How much would this person weigh on the moon.

Answers

Answer:

Weight is the force exerted on an object due to gravity and is calculated as the product of an object’s mass and the acceleration due to gravity. On Earth, the acceleration due to gravity is approximately 9.8 m/s^2. So, if a person weighs 784 N on Earth, their mass would be 784 N / 9.8 m/s^2 = 80 kg.

On the moon, where the acceleration due to gravity is 1.60 m/s^2, this person would weigh 80 kg * 1.60 m/s^2 = 128 N.

Explanation:

When a metal ball is charged by induction using a negatively charged plastic rod, what sign is the charge acquired by the metal ball?

Answers

When a metal ball is charged by induction using a negatively charged plastic rod, the charge acquired by the metal ball is positive.

This is because the negatively charged plastic rod attracts the positive charges in the metal ball, causing the negative charges to move away from the rod and towards the opposite end of the metal ball.

This leaves the end of the metal ball closest to the rod with a net positive charge, while the far end of the metal ball retains a net negative charge.

This separation of charges results in a positive charge on the end of the metal ball closest to the negatively charged rod.

To know more about induction here

https://brainly.com/question/18575018

#SPJ11

write the dynamic equations and find the transfer functions for the circuits shown passive lead circuit active lead circuit

Answers

The transfer function for the passive lead circuit can be derived as H(s) = V_C(s)/V_in(s) = (sRC + 1)/(sRC), and the transfer function for the active lead circuit can be derived as H(s) = V_C(s)/V_in(s) = -R_f/(1+sR_fC).

A passive lead circuit is an electrical circuit that uses a resistor and a capacitor to introduce a phase shift in a signal, causing the output signal to lead the input signal in phase. It is called "passive" because it does not require an external power source to function.

An active lead circuit is an electrical circuit that uses an operational amplifier (op-amp) to introduce a phase shift in a signal, causing the output signal to lead the input signal in phase. It is called "active" because it requires an external power source to function, typically from the power supply connected to the op-amp.

Assuming you are referring to electrical circuits, here are the dynamic equations and transfer functions for the passive and active lead circuits:

Passive Lead Circuit:

The dynamic equation for a passive lead circuit can be written using Kirchhoff's voltage law (KVL) and Ohm's law:

V_in = V_R + V_C

where:

V_in = input voltage

V_R = voltage across the resistor

V_C = voltage across the capacitor

Using the resistor and capacitor values, the transfer function for the passive lead circuit can be derived as:

H(s) = V_C(s)/V_in(s) = (sRC + 1)/(sRC)

Active Lead Circuit:

The dynamic equation for an active lead circuit can be written using the op-amp gain equation and KVL:

V_in - V_x = V_R

V_x - V_out = V_C

where:

V_x = voltage at the non-inverting input of the op-amp

Using the resistor and capacitor values, the transfer function for the active lead circuit can be derived as:

H(s) = V_C(s)/V_in(s) = -R_f/(1+sR_fC)

where:

R_f = feedback resistor value

Note that the negative sign in the transfer function comes from the fact that the output voltage is 180 degrees out of phase with the input voltage in an active lead circuit.

Hence, It is possible to derive the transfer function for the passive lead circuit as H(s) = V_C(s)/V_in(s) = (sRC + 1)/(sRC), and It is possible to derive the transfer function for the active lead circuit as H(s) = V_C(s)/V_in(s) = -R_f/(1+sR_fC).

To learn more about Kirchoff's law click:

https://brainly.com/question/86531

#SPJ4

(D) The potential energy of a particle at a location is the potential at that location times the charge.
In this case, the potential is kQ/d + kQ/d = (2kQ/d)

The figure above shows two particles, each with a charge of +Q, that are located at the opposite corners of a square of side d.

What is the potential energy of a particle of charge +q that is held at point P ?

Answers

For the two charges with charge +Q placed at opposite corners of the square, the potential at the point p is determined as (2kQ) / d  V.

The electric potential is the work done in bringing the unit positive charge from one point to another. It equals the charge and distance between the charges. The potential is directly proportional to the charges and inversely proportional to the distance of separation of charges.

The potential is defined as,  V = kQ/ r. In a square at a point p, the potential due to charge Q₁ is V₁ = kQ / d (where d is the side length of the square) and due to charge Q₂ is V₂ = kQ / d.  

The net electric potential is,

V = V₁ + V₂

   = (kQ / d) + (kQ / d)

   = 2 (kQ/d)

The potential at a point p in a square is V = 2 (kQ/d) V.

Learn more about the electric potential :

https://brainly.com/question/15058920

#SPJ4

         

(B) E is uniform between charged parallel plates therefore the force on a charge is also uniform
between the platesâº
Two large parallel conducting plates P and Q are connected to a battery of emf E, as shown above. A test charge is placed successively at points I, II, and III. If edge effects are negligible, the force on the charge
when it is at point III is
(A) of equal magnitude and in the same direction as the force on the charge when it is at point I
(B) of equal magnitude and in the same direction as the force on the charge when it is at point II
(C) equal in magnitude to the force on the charge when it is at point I, but in the opposite direction
(D) much greater in magnitude than the force on the charge when it is at point II, but in the same direction
(E) much less in magnitude than the force on the charge when it is at point II, but in the same direction

Answers

A test charge is placed successively at points I, II, and III. If edge effects are negligible, the force on the charge when it is at point III is of equal magnitude and in the same direction as the force on the charge when it is at point II. hence option B is correct.

Electric charge is the physical property of matter that experiences force when it is placed in electric field. F = qE where q is amount of charge, E = electric field and F = is force experienced by the charge. there are two types of charges, positive charge and negative charge which are generally carried by proton and electron resp. like charges repel each other and unlike charges attract each other. the flow charges is called as current. Elementary charge is amount of charge a electron is having, whose value is 1.602 x 10⁻¹⁹ C

hence the force F acting on the charge when it is in between two plates is,

F = qE

which do not depends on the distance from the plate inside the plates.

Hence option B is correct.

To know more about charge :

https://brainly.com/question/19886264

#SPJ4.

by how much would the index of refraction need to be increased to move the image 5.0 cm closer to the lens?

Answers

The change in the refractive index when the lens is brought near to the image is 0.014.

The refractive index is used to calculate the speed of light between two mediums. It is the ratio of the speed of light in a vacuum to that of the speed of light in a denser medium. It is inversely proportional to the speed of light, n = c/v. The focal length is the distance between the lens and the image. The refractive index depends on the focal length and they are inversely proportional.

From the given question,

The refractive index before the image was moved closer to the lens,      n₁ = 1.5, Radius of curvature R₂ = ₋15 cm, Distance (s) = 50 cm. The focal length can be calculated by the lens markers equation, 1/f = (n-1) (1/R₁-1/R₂) where R₁ and R₂ are the radii of the curvature and R₁ is at infinity because the lens is concave. The focal length is f= 30 cm.

Next, to find the object's distance 1/f = 1/s + 1/s', and s' is 75 cm. When the image comes closer to the lens, the distance is 70 cm. The new focal length (f') is 1/f' = 1/s + 1/s' and f' = 29.17. The new refractive index n' is

1/f' = (n'-1) (1/R₁-1/R₂) and n' is 1.514.

The change in refractive index, Δn = n₁-n' = 1.5-1.514 = 0.414.

Thus, the new refractive index is 0.414.

To learn more about the refractive index:

https://brainly.com/question/30761100

#SPJ4

Your question is incomplete, most probably your question is, Some electro-optic materials can change their index of refraction in response to an applied voltage. Suppose a plano-convex lens (flat on one side,15.0 cm radius of curvature on the other). made from a material whose normal index of refraction is 1.500, creating an image of an object that is 50.0 cm from the lens. By how much would the index of refraction need to be increased to move the image 5.0 cm closer to the lens?

And according to the answer, a change in refractive index is 0.414.

Suppose the time you take to bring the egg to a stop is ∆t. Would you rather catch the egg in such a way that ∆t is small or large. Why?

Answers

When catching an egg, it's generally better to aim for a larger value of Δt, which represents the time it takes to bring the egg to a stop. This is because the force exerted on the egg is inversely proportional to the time interval Δt, as described by the impulse-momentum theorem:

Impulse = Force × Δt = change in momentum

A larger Δt means that the force exerted on the egg is smaller, making it less likely for the egg to crack or break.

When you catch the egg by gradually slowing it down, you're effectively increasing the time interval Δt, thus reducing the force acting upon the egg.

In contrast, a smaller Δt corresponds to a larger force, which increases the risk of breaking the egg due to a more abrupt stop.

So, to minimize the risk of breaking the egg, it's best to catch it in such a way that Δt is large, allowing for a gentler deceleration and a lower force acting on the egg.

For more such answers on Impulse

https://brainly.com/question/30395939

#SPJ11

Imagine that you could travel at the speed of light. Starting from Earth, about how long would it take you to travel to the center of the Milky Way Galaxy? 28,000 years 50,000 years 100,000 years 28,000 ly 50,000 ly 100,000 ly

Answers

If you could travel at the speed of light, it would take you approximately 28,000 years to travel from Earth to the center of the Milky Way Galaxy.

Although it is currently impossible for any object with mass to travel at the speed of light, we can use the speed of light to calculate the time it would take to travel to the center of the Milky Way Galaxy if it were possible.

The distance from Earth to the center of the Milky Way Galaxy is approximately 28,000 light-years. This means that it would take light (traveling at the speed of light) approximately 28,000 years to make the journey from the center of the Milky Way Galaxy to Earth.If you were able to travel at the speed of light, you would be able to cover this distance in exactly 28,000 years (from your perspective). This is because, according to the theory of relativity, time would appear to slow down for you as you approach the speed of light.However, it is important to note that this is a hypothetical scenario, as it is currently impossible for any object with mass to travel at the speed of light.

for such more questions on speed of lights

https://brainly.com/question/104425

#SPJ11

the coldest temperature ever recorded in the us was -62.1 c (-78.9 f) what was the speed of the nitrogen molecules in the air that day

Answers

To find the speed of nitrogen molecules in the air at the coldest temperature ever recorded in the US, which was -62.1°C (-78.9°F), we can use the formula for root-mean-square (rms) speed of gas molecules:

v_rms = sqrt(3 * R * T / M)

where:
- v_rms is the root-mean-square speed
- R is the universal gas constant (8.314 J/mol·K)
- T is the temperature in Kelvin (convert from Celsius)
- M is the molar mass of nitrogen gas (N₂, approximately 28.0134 g/mol, which needs to be converted to kg/mol)

Step 1: Convert the temperature to Kelvin
T = -62.1°C + 273.15 = 211.05 K

Step 2: Convert the molar mass of nitrogen to kg/mol
M = 28.0134 g/mol * (1 kg/1000 g) = 0.0280134 kg/mol

Step 3: Calculate the rms speed of nitrogen molecules
v_rms = sqrt(3 * 8.314 * 211.05 / 0.0280134) ≈ 509.65 m/s

So, the speed of nitrogen molecules in the air that day was approximately 509.65 m/s.

To know more about speed of nitrogen molecules:

https://brainly.com/question/13873043

#SPJ11

Answer: 433.331653

T = -62.1 + 273 = 210.9

MM = 0.0280 = 0.028

V = sqrt((3*8.31*T)/(MM)) = 433.331653

T/F If you increase the time over which a torque is applied, you can decrease the magnitude of the torque and get the same change in angular momentum

Answers

The torque and still get the same change in angular momentum, according to the principle of conservation of angular momentum.  the torque and get the same change in angular momentum Δθ = J / I.

True. The principle of conservation of angular momentum states that the total angular momentum of a system remains constant if no external torque acts on it. This means that if a torque is applied to a system, the system will experience a change in its angular momentum.

The magnitude of the change in angular momentum depends on both the magnitude of the torque and the duration of the torque application. If a larger torque is applied for a shorter time, the change in angular momentum will be the same as if a smaller torque were applied for a longer time.

To see why this is true, we can use the formula for torque:

τ = Iα

where τ is the torque, I is the moment of inertia of the object being rotated, and α is the angular acceleration. Rearranging this equation, we can solve for the angular acceleration:

α = τ / I

Now, if we integrate both sides of the equation with respect to time, we get:

Δθ = ∫(α dt) = ∫(τ / I) dt

where Δθ is the change in angular displacement. If we assume that the moment of inertia of the object remains constant during the torque application, we can take it out of the integral:

Δθ = (1 / I) ∫τ dt

The integral on the right-hand side represents the impulse of the torque, which is equal to the product of the torque and the duration of the torque application:

J = ∫τ dt

Therefore, we can rewrite the equation as:

Δθ = J / I

This equation shows that the change in angular displacement is proportional to the impulse of the torque and inversely proportional to the moment of inertia of the object.

From this equation, we can see that if we increase the duration of the torque application, we can decrease the magnitude of the torque and still get the same change in angular displacement. This is because the product of the torque and the duration of the torque application remains the same, and therefore the impulse of the torque remains constant.

In summary, the magnitude of the change in angular momentum depends on both the magnitude of the torque and the duration of the torque application. If you increase the time over which a torque is applied, you can decrease the magnitude of the torque and still get the same change in angular momentum, according to the principle of conservation of angular momentum.

To learn more about magnitude visit:

https://brainly.com/question/15681399

#SPJ11

5.27 Eric has a mass of 60 kg. He is standing on a scale in an elevator that is accelerating downward at 1.7 m/s^2 . What is the approx. reading on the scale?A 0 NB 400 NC 500 ND 600 N

Answers

Eric has a mass of 60 kg. He is standing on a scale in an elevator that is accelerating downward at 1.7 m/[tex]s^{2}[/tex]

Hence, the correct option is C.

The force acting on Eric is the force due to gravity and the force due to the acceleration of the elevator.

The weight of Eric is given by

W = mg

Where W is the weight, m is the mass, and g is the acceleration due to gravity.

W = (60 kg)(9.8 m/[tex]s^{2}[/tex])

W =  588 N

The force due to the acceleration of the elevator is given by

F = ma

Where F is the force, m is the mass, and a is the acceleration of the elevator (-1.7 m/[tex]s^{2}[/tex] since it's accelerating downwards).

F = (60 kg)(-1.7 m/[tex]s^{2}[/tex]) = -102 N

F = -102 N

The approximate reading on the scale is the sum of the weight of Eric and the force due to the acceleration of the elevator.

Reading = W + F = 588 N - 102 N

Reading = = 486 N

Therefore, the approximate reading on the scale is 486 N.

Hence, the correct option is C.

To know more about elevator here

https://brainly.com/question/14281095

#SPJ4

What would the impulse be if the initial momentum of the cart were larger? What if the collision were inelastic rather than elastic, i.e.. what if the cart stuck to the wall after the collision?

Answers

Assuming the same impact time and force, a bigger initial momentum for the cart would result in a larger impulse and change in momentum.

Momentum is defined as mass times velocity. it tells about the moment of the body. it is denoted by p and expressed in kg.m/s. mathematically it is written as p = mv. A body having zero velocity or zero mass has zero momentum. its dimensions is [M¹ L¹ T⁻¹]. Momentum is conserved throughout the motion.

According to conservation law of momentum initial momentum is equal to final momentum.

impulse is the force times time which taken by body to change its momentum.

if the initial momentum is larger then impulse will be larger in collision.

to know more about impulse :

https://brainly.com/question/16980676

#SPJ4.

A planet orbits the sun in an elliptical path, with the furthest distance from the sun (aphelion) of 70x10^9m and the closest distance (perihelion) of 46 x 10^9 m. If the planet is traveling 39 km/s at aphelion, how fast is it traveling at perihelion?

Answers

The planet is traveling at 59.7 km/s at perihelion.

How fast is it traveling at perihelion?

The planet's speed at perihelion can be calculated using the conservation of angular momentum.

Since the planet is traveling in an elliptical path, its angular momentum must remain constant. This means that the product of its mass, velocity, and distance from the sun must remain constant.

At aphelion, the planet's velocity is 39 km/s and its distance from the sun is 70 x 10⁹m. Using the conservation of angular momentum, we can write:

m * v_aphelion * d_aphelion = m * v_perihelion * d_perihelion

where m is the mass of the planet, v_aphelion is the velocity at aphelion, d_aphelion is the distance from the sun at aphelion, v_perihelion is the velocity at perihelion, and d_perihelion is the distance from the sun at perihelion.

Solving for v_perihelion, we get:

v_perihelion = (v_aphelion * d_aphelion) / d_perihelion

Plugging in the given values, we get:

v_perihelion = (39 km/s * 70 x 10⁹ m) / (46 x 10⁹ m)

v_perihelion = 59.7 km/s (rounded to two decimal places)

Therefore, At perihelion, the planet is moving at a speed of 59.7 km/s.

Learn more about perihelion.

brainly.com/question/17392860

#SPJ11

A 600 −Ω and a 2800 −Ω resistor are connected in series with a 12-V battery.
What is the voltage across the 2800 −Ω resistor?

Answers

The voltage across the 2800-Ω resistor is approximately 9.88 V.

To find the voltage across the 2800-Ω resistor when it is connected in series with a 600-Ω resistor and a 12-V battery, follow these steps:

1. Calculate the total resistance (R_total) in the series circuit:
R_total = R1 + R2 = 600 Ω + 2800 Ω = 3400 Ω

2. Calculate the total current (I_total) flowing through the circuit using Ohm's Law:
I_total = Voltage / R_total = 12 V / 3400 Ω ≈ 0.00353 A

3. Calculate the voltage across the 2800-Ω resistor (V2) using Ohm's Law:
V2 = I_total ×R2 = 0.00353 A ×2800 Ω ≈ 9.88 V

The voltage across the 2800-Ω resistor is approximately 9.88 V.

To learn more about battery https://brainly.com/question/26466203

#SPJ11

It takes 275 N to set a stationary 77.3 kg crate in motion. What is the coefficient of static friction?

Answers

The coefficient of static friction between the crate and the surface it is on is 0.362.

The force required to set a stationary crate in motion is given by the product of the coefficient of static friction (μs) and the normal force (N) acting on the crate. Thus, we can use the following formula to find μs:

μs = F / N

where F is the force required to set the crate in motion.

Substituting the given values of F = 275 N and m = 77.3 kg, we can find N using the formula N = mg, where g is the acceleration due to gravity.

N = (77.3 kg)(9.81 m/s²) = 758.413 N

Therefore, the coefficient of static friction is:

μs = F / N = 275 N / 758.413 N = 0.362

Learn more about static friction at

https://brainly.com/question/17237604

#SPJ4

a block of mass m slides along a frictionless, horizontal table at a speed of v and hits a spring, compressing it by an amount of x . if this procedure is then repeated, except the block is launched at the spring with four times the speed as before, how much will the spring compress in terms of x ? express your answer as a multiple of x .

Answers

When the block is launched with four times the speed, its kinetic energy will increase by a factor of 16 (4^2) since kinetic energy is proportional to the square of the velocity. Therefore, when it hits the spring, the spring will compress by a factor of 16x (where x is the original amount of compression).

This can be seen from the equation for the potential energy stored in a spring:

U = (1/2)kx^2

where U is the potential energy stored in the spring, k is the spring constant, and x is the amount of compression.

Since the block's kinetic energy is increasing by a factor of 16, the work done by the block on the spring will also increase by a factor of 16. Therefore, we can write:

(1/2)mv^2 = 16(1/2)kx^2

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force. Applying a force requires us to do work. After work has been done, energy has been transferred to the object, and the object will be moving with a new constant speed



Simplifying this equation, we get:

x = (1/4)^(1/2) * x

Therefore, the spring will compress by a factor of 1/2 (or 0.5) of its original amount when the block is launched with four times the speed.

To know more about kinetic energy please click:-

https://brainly.com/question/26405082

#SPJ11

Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here

Answers

The mass of the car in terms of the given quantities is: mcar = (1/3) * m1 * (v^2 / vcar^2)

We found the kinetic energy of the flywheel to be:

K = (1/2) * m1 * v^2

If one third of this kinetic energy is transferred to car, then kinetic energy of car can be expressed as:

Kcar = (1/3) * K = (1/3) * (1/2) * m1 * v^2 = (1/6) * m1 * v^2

The kinetic energy of the car can also be expressed in terms of its mass  and speed as:

Kcar = (1/2) * mcar * vcar^2

Setting these two expressions for Kcar equal to each other and solving for mcar, we get:

(1/6) * m1 * v^2 = (1/2) * mcar * vcar^2

mcar = (1/3) * m1 * (v^2 / vcar^2)

To know more about kinetic energy, here

brainly.com/question/26472013

#SPJ4

a sphere of styrofoam with a density of 152 kg/m3 has a 45 cm diameter. if the sphere is placed in water, what is the maximum iron mass that can be suspended by a string from it so that it does not sink? previousnext

Answers

If the sphere is placed in water, the maximum iron mass that can be suspended by a string from it so that it does not sink would be 4.85 kg.

To determine the maximum iron mass that can be suspended from the styrofoam sphere without causing it to sink, we need to calculate the buoyant force acting on the sphere.

The buoyant force is equal to the weight of the displaced water, which is determined by the volume of the sphere submerged in water.

First, we need to calculate the volume of the sphere using its diameter:

Volume = [tex](4/3) \times \pi  \times (diameter/2)^3[/tex]
Volume = [tex](4/3) \times \pi  \times (45cm/2)^3[/tex]
Volume = [tex]3.87 \times 10^5 cm^3[/tex]

Next, we need to convert the volume to cubic meters:

Volume = [tex]3.87 \times 10^-1 m^3[/tex]

Since the density of the styrofoam is given as [tex]152 kg/m^3[/tex], we can calculate its mass as:

Mass = density x volume
Mass =[tex]152 kg/m^3 \times 3.87 \times 10^-1 m^3[/tex]
Mass = 58.5 kg

Now, we can calculate the buoyant force acting on the sphere:

Buoyant force = weight of displaced water
Buoyant force = density of water x volume of submerged sphere x acceleration due to gravity
Buoyant force = [tex]1000 kg/m^3 \times (4/3) \times \pi  \times (22.5cm/100)^3 \times 9.81 m/s^2[/tex]
Buoyant force = 47.5 N

Finally, we can calculate the maximum iron mass that can be suspended from the sphere using the buoyant force:

Maximum iron mass = buoyant force/acceleration due to gravity
Maximum iron mass = [tex]47.5 N / 9.81 m/s^2[/tex]
Maximum iron mass = 4.85 kg

Therefore, the maximum iron mass that can be suspended from the styrofoam sphere without causing it to sink is approximately 4.85 kg.

For more such answers on buoyant force

https://brainly.com/question/17009786

#SPJ11

Positive charge is distributed uniformly throughout a large insulating cylinder of radius R=0.900 m. The charge per unit length in the cylindrical volume is λ = 3.00×10^−9 C/m. Calculate the magnitude of the electric field at a distance of 0.200 m from the axis of the cylinder. (Note: εo = 8.854×10^−12 C2/N^−1 m2.)

Answers

When Positive charge is distributed uniformly throughout a large insulating cylinder of radius R=0.900 m. The charge per unit length in the cylindrical volume is λ = 3 ×10⁻⁹ C/m. then the magnitude of the electric field at a distance of 0.200 m from the axis of the cylinder is 33.88 N/C.

Electric field is field around electrically charged particle where columbic force of attraction or repulsion can be experienced by other charged particles. It is denoted by letter E and it's SI unit is V/m Volt per meter or N/C newton per coulomb. Electric field comes inward to the center of the negative charge and it is going outward for positive charge.

The electric field E at a point outside the charged cylinder at a distance r is given by,

E = [tex]\frac{\lambda r}{2\epsilon }[/tex]

where λ is charge density, r is distance, ε₀ = 8.854×10⁻¹² m⁻³ kg⁻¹ s⁴A²= permittivity of free space.

Given,

λ =  3 ×10⁻⁹ C/m

radius R = 0.900 m

r = 0.200 m

ε₀ = 8.854×10⁻¹² m⁻³ kg⁻¹ s⁴A².

[tex]E = \frac{\ 3 *10^{-9} *0.2}{2 * 8.854*10^{-12} }[/tex]

E = 33.88 N/C

To know more about electric field :

https://brainly.com/question/15800304

#SPJ4.

if the water is drawn in through two parallel, 3.3- m -diameter pipes, what is the water speed in each pipe?

Answers

The water speed in each pipe is the same.

To determine the water speed in each pipe, we need to know the flow rate of the water.

We can calculate the flow rate using the equation:
Q = A * V
where Q is the flow rate, A is the cross-sectional area of the pipes, and V is the velocity of the water.

Assuming that the pipes are carrying the same amount of water, we can set the flow rate for each pipe equal to each other:
Q1 = Q2
A1 * V1 = A2 * V2

We know that the diameter of each pipe is 3.3 meters, so we can calculate the cross-sectional area using the formula:

A = π * (d/2)²
where d is the diameter of the pipe.

Plugging in the values, we get:
A = π * (3.3/2)² = 8.56 m²

So for each pipe, we have:
A1 = A2 = 8.56 m²

Substituting into the flow rate equation, we get:
8.56 * V1 = 8.56 * V2

Dividing both sides by 8.56, we get:
V1 = V2

So the water speed in each pipe is the same. We cannot determine the exact speed without more information, but we know that it is equal in both pipes.

Learn more about speed:

https://brainly.com/question/13943409

#SPJ11

A piece of aluminum has density 2.70 g/cm3 and mass 775 g. The aluminum is submerged in a container of oil of density 0.650 g/cm3. A spring balance is attached with string to the piece of aluminum. What reading will the balance register in grams (g) for the submerged metal?

Answers

The spring balance will register a reading of 588.42 g for the submerged aluminum piece.

To find the reading on the spring balance in grams (g) for the submerged aluminum piece, we need to use the terms density, mass, and buoyancy.

Here's a step-by-step explanation:

1. First, find the volume of the aluminum piece using the formula: Volume = Mass / Density.
  Volume = 775 g / 2.70 g/cm³ = 287.04 cm³

2. Next, calculate the buoyant force exerted on the aluminum by the oil using the formula:

Buoyant Force = Volume × Density of oil × g (acceleration due to gravity)
  Buoyant Force = 287.04 cm³ × 0.650 g/cm³ × 9.81 m/s² = 1830.31 g × m/s²

3. Convert the buoyant force from g × m/s² to grams (g) by dividing by g (9.81 m/s²):
  Buoyant Force (in grams) = 1830.31 g × m/s² / 9.81 m/s² = 186.58 g

4. Finally, find the reading on the spring balance by subtracting the buoyant force from the mass of the aluminum piece:
  Reading on the balance = Mass - Buoyant Force (in grams)
  Reading on the balance = 775 g - 186.58 g = 588.42 g

Learn more about spring balance:

https://brainly.com/question/13873119

#SPJ11

T/F If a body starts with zero velocity and ends with zero velocity, then the area under the positive acceleration curve must be equal to the area under the negative acceleration curve

Answers

The given statement, "If a body starts with zero velocity and ends with zero velocity, then the area under the positive acceleration curve must be equal to the area under the negative acceleration curve," is True. This is because positive acceleration causes an increase in velocity, while negative acceleration causes a decrease in velocity.

In order for the body to return to zero velocity, the total change in velocity due to positive acceleration must be canceled out by the total change in velocity due to negative acceleration, meaning that the areas under both curves must be equal.

The area under the positive acceleration curve represents the increase in velocity during the displacement, while the area under the negative acceleration curve represents the decrease in velocity during the return to the original position. Since the body ends with zero velocity, the areas under both curves must be equal in magnitude and opposite in sign, resulting in a net area of zero.

Learn more about acceleration here:

https://brainly.com/question/460763

#SPJ11

1D explosion: Hauler moving along an x axis in space, has INTERNAL explosion, leaves a module behind. Given initial V relative to sun, masses, V hauler relative to module.What is V hauler relative to sun?

Answers

A space hauler and cargo module with a total mass of M travel with initial velocity [tex]v_i[/tex] relative to the Sun. After ejecting the module, the velocity of the hauler relative to the Sun is 1975 km/h.

Let's start by applying the law of conservation of momentum. Assuming that there are no external forces acting on the system, the total momentum before the explosion is equal to the total momentum after the explosion.

Let's denote the mass of the hauler as m₁, the mass of the module as m₂, the initial velocity of the hauler relative to the sun as v₁, and the velocity of the hauler relative to the module as v₂. We know that m₁ + m₂ = M, and that m₂ = 0.20M.

Before the explosion, the total momentum of the system is

P₁ = m₁*v₁

After the explosion, the hauler and the module move in opposite directions. Let's assume that the hauler moves to the right and the module moves to the left. The total momentum of the system after the explosion is

P₂ = m₁*(v₁ + 500 km/h) + m₂*(-v)

where the negative sign in front of v₂ indicates that the module is moving in the opposite direction to the hauler.

By applying the conservation of momentum, we can set P₁ equal to P₂:

m₁v₁ = m₁(v₁ + 500 km/h) + m₂*(-v₂)

Simplifying this equation gives

v₁ = v2/5

Since m₂ = 0.20M and m₁ + m₂ = M, we have m₁ = 0.80M. Therefore:

v₁ = v₂/5 = (-0.20M)/(0.80M) * 500 km/h = -125 km/h

The negative sign indicates that the hauler is moving in the opposite direction to the initial velocity [tex]v_i[/tex]. Therefore, the velocity of the hauler relative to the Sun is

[tex]v_{1final}[/tex] = [tex]v_i[/tex] + v₁ = 2100 km/h - 125 km/h = 1975 km/h

So the velocity of the hauler relative to the Sun is 1975 km/h.

To know more about velocity:

https://brainly.com/question/30559316

#SPJ4

--The given question is incomplete, the complete question is given

" A space hauler and cargo module, of total mass M, travels along an x axis in deep space. They have an initial velocity vi of magnitude 2100 km/h relative to the Sun. With a small explosion, the hauler ejects the cargo module, of mass 0.20M. The hauler then travels 500 km/h faster than the module along the x axis; that is, the relative speed between the hauler and the module is 500 km/h. What then is the velocity of the hauler relative to the Sun?"--

A planet that has one third the mass of Earth and one third the radius of Earth has an escape velocity of

Answers

A planet that has one third the mass of Earth and one third the radius of Earth has an escape velocity of  approximately 7.67 km/s.

To calculate the escape velocity of a planet with one third the mass and radius of Earth, we can use the formula for escape velocity:

escape velocity = √(2GM/r)

where G is the gravitational constant, M is the mass of the planet, and r is the radius of the planet.

Since the planet has one third the mass and radius of Earth, we can substitute these values into the formula:

M = (1/3)M_Earth

r = (1/3)r_Earth

where M_Earth and r_Earth are the mass and radius of Earth, respectively.

Substituting these values into the formula for escape velocity, we get:

escape velocity = √(2G(1/3)M_Earth/(1/3)r_Earth)

Simplifying this expression, we get:

escape velocity = √(2GM_Earth/r_Earth)

Therefore, the escape velocity of a planet with one third the mass and radius of Earth is the same as the escape velocity of Earth, which is approximately 11.2 km/s.
Hi! The escape velocity of a planet can be calculated using the formula:

Escape Velocity = √(2 * G * M / R)

where G is the gravitational constant (approximately 6.674 × 10^-11 m³ kg⁻¹ s⁻²), M is the mass of the planet, and R is the radius of the planet.

In this case, the planet has 1/3 the mass (M) and 1/3 the radius (R) of Earth. The mass and radius of Earth are approximately 5.972 × 10^24 kg and 6,371,000 meters, respectively.

So, for this planet:
M = (1/3) * 5.972 × 10^24 kg
R = (1/3) * 6,371,000 meters

Plug these values into the escape velocity formula:

Escape Velocity = √(2 * (6.674 × 10^-11 m³ kg⁻¹ s⁻²) * ((1/3) * 5.972 × 10^24 kg) / ((1/3) * 6,371,000 meters))

After calculating, the escape velocity for this planet is approximately 7.67 km/s.

For more such questions on escape velocity, click on:

https://brainly.com/question/29911258

#SPJ11

Which of the following sentences about a persons voice is FALSE?

A. The fundamental frequency of a person's speech tends to be lower when they are sad.
B. The duration of phonemes in an person's speech are typically longer when they are angry.
C. The fundamental frequency of a person's speech tends to be higher when they are excited or joyful.
D. The duration of phonemes in an person's speech are typically longer when they are sad.

Answers

In fact, some research has suggested that angry speech may actually be characterized by shorter phoneme durations, as well as higher fundamental frequencies and greater variability in pitch and loudness.

The FALSE sentence is B. The duration of phonemes in a person's speech is typically not longer when they are angry.

The fundamental frequency of a person's speech tends to vary based on their emotional state. When a person is excited or joyful, their fundamental frequency tends to be higher, while when they are sad, their fundamental frequency tends to be lower. The duration of phonemes in a person's speech can also vary with their emotional state, but the general pattern is that phonemes are typically longer when a person is happy or relaxed, and shorter when they are stressed or anxious.

However, there is little evidence to suggest that the duration of phonemes in a person's speech is typically longer when they are angry. In fact, some research has suggested that angry speech may actually be characterized by shorter phoneme durations, as well as higher fundamental frequencies and greater variability in pitch and loudness.

To learn more about variability visit:

https://brainly.com/question/17344045

#SPJ11

Other Questions
In his writing, Mies van der Rohe saw technology soon replacing and outmoding architecture. (T/F) : Level I: Reviewing Facts and Terms (Bloom's Taxonomy: Comprehension)35) The osmolarity in the deepest part of the loop of Henle is ________ mOsM.A) 1200 B) 100C) 300D) 900E) None of these answers are correct. What lifestyle modifiation should be advised for ptaients with hypertension Summarize the story about Billionaire Ted. What do you think is the point of that story? two half-reactions proposed for the corrosion of iron in the absence of oxygen are calculate the standard cell potential generated by a galvanic cell running this pair of half-reactions. is the overall reaction spontaneous under standard conditions? as the ph falls from , will the reaction become spontaneous? when a taxpayer engages in a qualified like-kind exchange, how is the gain or loss on the exchange treated? multiple choice question. the gain or loss is taxed as ordinary income. the recognition of the gain or loss is deferred and taxed in a subsequent transaction. the gain or loss is taxed as a long-term capital gain or loss. the gain or loss is allocated between ordinary income/loss and a capital gain/loss How did the development of the legislative presidency influence the development of congressional institutions like standing committees or the Speaker of the House? In professional football, salaries are determined by the league for the first several years, but then the athletes have a chance to become free agents and seek employment with other teams.When they are under contract, the athletes haveA. flexible wages but they become sticky when they become free agentsB. more control over their wages because of the contractC. sticky wages but they become flexible when they become free agentsD. no control over any of the terms of the contract The Department of Customer Service's Accounting Division bases its budget request for the following year on the average of its actualexpenses for the previous four years. The division has both fixed costs, which remain the same year-to-year, and variable costs, whichfluctuate year-to-year. Each year's budget request is determined by adding the fixed costs for the current year to the average of the variablecosts for the previous four years. Below is a summary of the Accounting Division's fixed and variable costs for the years 2018 through 2021. 2) the break-even tax rate between a corporate bond and a comparable nontaxable municipal bond is 18%. if the municipal bond has a yield of 4.7%,a) what is the yield of the corporate bond?b) if the actual tax rate is 13%, which bond would you prefer buying? An increase in the plasma concentration and a prolongation of the elimination half-life of etomidate is seen with the concomitant administration of:midazolam rocuronium fentanyl succinylcholine A farmer has 75 m of fencing available to enclose a rectangular area along a road that is already fenced. The enclosed area will also have to be divided into 2 equal pens. Calculate the maximum area of the enclosement and the dimensions that will create it. Express your answers with 2 decimal places if necessary. Typical operational HR functions include legal compliance, processing applications, training supervisors, and answering questions about wages and salaries.t/f By default, all duplicate values are included in the aggregate calculation, unless you specify the __________________ keyword. Fill in the blanksOn island 1,_____ with short, strong beaks would be more likely to live and ______ and pass on the trait-the short. strong beak-to their______. On island 2, however, finches with long, thin beaks would be more likely to live and reproduce land pads on the trait-the long, thin beak- to their offspring. ______ selection then is the process by which individuals with ______ traits are more likely to ______ and produce offspring which they ______the useful_____useful. finches. survive. reproduce. Natural. traits. offspring. pass-on. please help me out assume the parent of a u.s.-based mnc plans to completely finance the establishment of its british subsidiary with existing funds from retained earnings in u.s. operations. according to the text, the discount rate used in the capital budgeting analysis on this project should be most affected by: Why is the electromagnetic spectrum important to astronomers when studying stars and other planets? Do you think that there may be some closely related species of organisms that cannot be identified w/ a classification key? tuberculocidal disinfectants are often referred to as In about 1870 a census found how many tenements out of 609 to be in decent shape in "the Bend" district of Mulberry Street?